全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

(W+Mo)/Cr比对铸造镍基高温合金时效组织和持久性能的影响

DOI: 10.11900/0412.1961.2014.00281, PP. 67-76

Keywords: 镍基高温合金,(W+Mo)/Cr比,长期时效,组织演化,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用真空冶炼制备了不同(W+Mo)/Cr比(质量比)的铸造镍基高温合金,采用OM,SEM和TEM观察了合金试样的微观组织,研究了(W+Mo)/Cr比对合金组织演化和持久性能的影响.结果表明,(W+Mo)/Cr比对热处理态组织无明显影响,主要组成相为g基体、g'相、初生MC和晶界二次碳化物.长期时效期间,合金试样的组织演化主要包括g'相粗化、拓扑密排相(TCP)相析出、MC分解和晶界粗化.随(W+Mo)/Cr比降低,MC的热稳定性明显降低,晶界粗化程度升高,晶界碳化物发生了M6C→M6C+M23C6→M23C6的转变.同时,TCP相的析出量明显减少.当(W+Mo)/Cr比为0.22时,无TCP相析出.另外,(W+Mo)/Cr比由高于0.55降低至0.37时,TCP相的种类由m相转变为了m与s相共存.g'相和晶界粗化及TCP相的析出是引起合金持久性能降低的主要原因.综合(W+Mo)/Cr比对合组织演化和持久性能的影响得出,(W+Mo)/Cr比约为0.37时,合金具有最佳的持久性能.

References

[1]  Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[2]  Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[3]  Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[4]  Wanger C Z. Elektrochem, 1961; 65: 581
[5]  Swalin R A, Martin A. J Met, 1956; 206: 567
[6]  Van Der Molten F H, Oblak J M, Kriege O H. Metall Trans, 1971; 2: 1627
[7]  Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[8]  Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A533: 14
[9]  Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. Mater Sci Eng, 2008; A485: 74
[10]  Sun W, Qin X Z, Guo Y A, Guo J T, Zhou L Z, Lou L H. Acta Metall Sin, 2014; 50: 744 (孙 文, 秦学智, 郭永安, 郭建亭, 周兰章, 楼琅洪.金属学报, 2014; 50: 744)
[11]  Liu L R, Jin T, Zhao N R, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2003; A361:191
[12]  Chen Q Z, Knowles D M. Metall Trans, 2002; 33A: 1319
[13]  Pessah M, Caron P, Khan T. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992,567
[14]  Pessah-Simonetti M, Caron P, Khan T. Mater Sci Eng, 1998; A254: 1
[15]  Guo J T. Materials Science and Engineering for Superalloys. Vol.1, Beijing: Science Press, 2008: 39 (郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 39)
[16]  Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30 (蔡榆林, 郑运荣. 金属学报, 1982; 18: 30)
[17]  Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, New York: Wiley, 1987: 97
[18]  Pollock T M. Mater Sci Eng, 1999; B32: 255
[19]  Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[20]  Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, Mclean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[21]  Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[22]  Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[23]  Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[24]  Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133