全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

ScMn2合金贮氢(氘)性能

DOI: 10.3724/SP.J.1037.2012.00109, PP. 822-829

Keywords: ScMn2合金,吸氢活化,P-C-T曲线,热力学,动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用XRD研究了ScMn2合金及其氢(氘)化物的晶体结构;利用Sieverts装置测量了合金的吸氢活化性能、P-C-T曲线及吸氢动力学曲线;利用热重--差热分析仪(TG-DSC)研究了ScMn2H3.6钝化后的放氢动力学.结果表明,ScMn2的氢(氘)化物保持了母合金C14型Laves相结构,吸氢造成的晶胞体积膨胀约为25%;ScMn2在室温常压下能与H(D)迅速发生反应,具有优异的活化性能;100kPa,298K时,1molScMn2合金的贮氢量和贮氘量分别约为3.7和3.6mol;ScMn2具有较低的吸、放氢滞后临界温度,优异的平台特征以及较低的平台压,适于H及其同位素贮存.与室温平台压对应的合金氢化物的?H和?S分别为-45kJ/mol和-80J/(K?mol);ScMn2在113kPa初始H2(D2)压强下吸氢(氘)动力学可用JMA模型描述,反应级数为0.4,吸氢和吸氘的表观活化能分别为(16±0.3)和(19±1.7)kJ/mol,此活化能的差异使ScMn2有可能用于H同位素分离;钝化后的合金氢化物在639K时能完全放氢,放氢的表观活化能为(144±14)kJ/mol.

References

[1]  Pebler A, Gulbransen E A. Electrochem Technol, 1966; 4: 211
[2]  Pourarian F, Fujii H, Wallace W E, Sinha V K, Kevin Smith H. J Phys Chem, 1981; 85: 3105
[3]  Moriwaki Y, Gamo T, Iwaki T. J Less-Common Met, 1991; 172: 1028
[4]  Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[5]  Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191
[6]  Li W H, Wu E D. J Alloys Compd, 2012; 511: 169
[7]  Dwight A E. Trans Am Soc Met, 1961; 53: 479
[8]  Park J M, Lee J Y. J Less-Common Met, 1991; 167: 245
[9]  Kost M E, Raevskaya M V, Shilov A L, Yaropolova E I, Mikheeva V I. Russ J Inorg Chem, 1979; 24: 1803
[10]  Griessen R, Driessen A, De Groot D G. J Less-Common Met, 1984; 103: 235
[11]  Shilov A L, Kost M E, Kuznetsov N T. J Less-Common Met, 1985; 105: 221
[12]  Hunter B A, Howard C J. LHPM: A Computer Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns, ANSTO Report, 1998
[13]  Srinivas G, Sankaranarayanan V, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 2480
[14]  Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid- Fetzer R. Mater Sci Eng, 1999; A263: 1
[15]  Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261
[16]  Liu B H, Kim D M, Lee K Y, Lee J Y. J Alloys Compd, 1996; 240: 214
[17]  Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509
[18]  Hu Z L. Hydrogen Storage Materials. Beijing: Chemical Industry Press, 2002: 441
[19]  (胡子龙. 贮氢材料. 北京: 化学工业出版社, 2002: 441)
[20]  Broom D P. Hydrogen Storage Materials. London: Springer-Verlag, 2011: 89
[21]  Ohtani Y, Hashimoto S, Uchida H. J Less-Common Met, 1991; 172-174: 841
[22]  Srinivas G, Sankaranarayanan V, Ramaprabhu S. J Alloys Compd, 2008; 448: 159
[23]  Kissinger H E. Anal Chem, 1957; 29: 1702
[24]  Hu R Z, Shi Q Z. Thermal Analysis Kinetics. Beijing: Science Press, 2001: 1
[25]  (胡荣祖, 史启祯. 热分析动力学. 北京: 科学出版社, 2001: 1)
[26]  Fang Y Z, Liao M S, Hu L L. Thermochim Acta, 2006; 443: 179
[27]  Hsieh Y C, Chou Y C, Lin C P, Hsieh T F, Shu C M. Aerosol Air Qual Res, 2010; 10: 212

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133