全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Nb对奥氏体热变形后等温回复的影响

DOI: 10.3724/SP.J.1037.2012.00189, PP. 775-781

Keywords: Nb微合金化钢,应力松弛,回复,溶质拖曳,形变积累

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用热模拟实验研究了不同Nb含量的低C高Mn钢在800-900℃变形后奥氏体的回复特征,同时借助Fe-40%Ni-0.1%Nb(质量分数)合金揭示了回复过程中的位错演化及析出行为,建立了位错滑移及溶质拖曳机制的等温回复动力学模型,据此计算拟合了应力松弛曲线上回复实验数据,计算结果与理论分析及实验结果相符.实验及模拟结果表明,Nb溶质拖曳及析出均减慢回复过程,提高变形积累;与Nb溶质拖曳相比,析出能够更有效地延缓回复软化;Nb溶质拖曳通过升高回复激活自由能U0及减小激活长度来实现回复过程的延缓,提高溶质Nb含量,将升高U0和减小激活长度.对于含Nb低C高Mn微合金钢,在道次间隔短的多道次热连轧精轧阶段,变形积累主要依靠Nb溶质拖曳作用,而对于轧制节奏较慢的中厚板精轧,轧制变形的积累依靠Nb溶质拖曳与析出的共同作用.

References

[1]  Cuddy L J. Proceedings of an International Conference on the Themo-Mechanically Processing of Microalloyed Austenite, Metallurgical Society of AIME, 1981: 129
[2]  DeArdo A J, Gray J M, Meyer L. In: Stuart H ed., Fundamental Metallurgy of Niobium in Steel, Niobium: AIME, 1981: 685
[3]  Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H S, Subramanian S V. Frontiers Mater Sci China, 2010; 4: 197
[4]  Yuan S Q, Yang S W, Nie W J, He X L. Acta Metall Sin, 2004; 40: 887
[5]  (苑少强, 杨善武, 聂文金, 贺信莱. 金属学报, 2004; 40: 887)
[6]  Karjalainen L P, Perttula J. ISIJ Int, 1996; 36: 729
[7]  Zhao J S. Theory Basis of Dislocations, Beijing: National Defence Industry Press, 1989: 125
[8]  (赵敬世. 位错理论基础, 北京: 国防工业出版社, 1989: 125)
[9]  Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47: 127
[10]  Feng D. Physics of Metals, Vol.3, Beijing: Science Press, 2000: 373
[11]  (冯端, 金属物理学, 第三卷, 北京: 科学出版社, 2000: 373)
[12]  Frost H J, Ashby M F. Deformation Mechanism Maps, Oxford: Pergamon Press, 1982: 21
[13]  Furu T, Qrsund R, Nes E. Acta Metall Mater, 1995; 43: 2209
[14]  Zurob H S, Hutchinson C R, Brechet Y, Purdy G R. Acta Mater, 2002; 50: 3075
[15]  Feng D. Physics of Metals, Vol.1, Beijing: Science Press, 2000: 543
[16]  (冯端, 金属物理学, 第一卷, 北京: 科学出版社, 2000: 543)
[17]  Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 187
[18]  Liu W J. Metall Mater Trans, 1995; 26A: 1641
[19]  Hou H X, Yang Y, Zhang T, Liu M. Iron Steel, 2009; 44(8): 72
[20]  (侯华兴, 杨 颖, 张涛, 刘 明. 钢铁, 2009; 44(8): 72)
[21]  Miao C L, Shang C J, Zhang G D, Subramanian S V. Mater Sci Eng, 2010; A527: 4985
[22]  Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713
[23]  Zurob H S, Zhu G, Subramanian S V, Purdy G R, Hutchinson C R, Brechet Y. Mater Sci Forum, 2005; 500-501: 123
[24]  Hutchinson C R, Zurob H S, Sinclair C W, Brechet Y. Scr Mater, 2008; 59: 635
[25]  Nie W J, Xin W F, Xu T M, Shi P J, Zhang X B. Adv Mater Res, 2011; 194-196: 1183
[26]  Nie W J, Wang Z F, Li R, Li Y C, Zhang X B. Iron Steel, 2009; 44(8): 76
[27]  (聂文金, 王志福, 李冉, 李玉藏, 张晓兵. 钢铁, 2009; 44(8): 76)
[28]  Yoshitaka A. In: Enomoto M ed., New Structure Steels and New Design of Conatructions, 6th Workshop on the Ultra-Steel, Tsukuba: The Iron and Steel Institute of Japan, 2002: 91
[29]  Liu W J, Jonas J J. Metall MaterTrans, 1988; 19A: 1403
[30]  Yang S W, Shang C J, Wang X M, He X L. J Univ Sci Technol Beijing, 2001; 3: 214
[31]  Yuan S Q, Yang S W, Shang C J, He X L. Mater Sci Forum, 2003; 426-432: 1307
[32]  Yuan S Q, Yang S W, NieWJ, He X L. J Univ Sci Technol Beijing, 2003; 10: 76

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133