全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

Ti2448合金高温变形行为及组织演变机制的转变

DOI: 10.3724/SP.J.1037.2012.00007, PP. 837-844

Keywords: Ti2448合金,动态回复(DRV),动态再结晶(DRX),应变速率,组织演变

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了多功能亚稳β型Ti2448(Ti-24Nb-4Zr-8Sn,质量分数,%)合金在$\beta$单相区的高温变形行为.结果表明,在低应变速率(1s-1)条件下,真应力和应变速率的双对数关系可以通过2个线性关系分别表征,平均应变速率敏感值(mavg)分别为0.265和0.032,这不同于常规β钛合金随着应变速率的增大而逐渐降低的应变硬化规律,即Sigmoidal曲线特征.微观组织演化和动力学分析显示,这种特殊的双线性关系与高应变速率导致的局域化非均匀塑性变形行为和动态再结晶(DRX)相关联.尽管动态回复(DRV)是该合金高温塑性变形的主要组织演变机制,高应变速率使得组织演变从DRV向DRX转变,并在交错的变形带内形成小于3μm的细晶组织.因此,高应变速率条件下的DRX是实现Ti2448合金高温变形过程中细化组织的主要机制.

References

[1]  Gryziecki J, Gdula Z. Mater Sci Eng, 1987; A93: 99
[2]  Kaibyshev R, Sitdikov O, Goloborodko A, Sakai T. Mater Sci Eng, 2003; A344: 348
[3]  Hallberg H, Wallin M, Ristinmaa M. Mater Sci Eng, 2010; A527: 1126
[4]  Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821
[5]  Belyakov A, Gao W, Mirura H, Sakai T. Metall Mater Trans, 1998; 29A: 2957
[6]  Chen Y J, Li Y J, Walmsley J C, Dumoulin S, Roven H J. Metall Mater Trans, 2010; 41A: 787
[7]  Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R. Mater Sci Eng, 2011; A528: 22
[8]  Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277
[9]  Zhang S Q, Li S J, Jia M T, Hao Y L, Yang R. Scr Mater, 2009; 60: 733
[10]  Cui J P, Hao Y L, Li S J, Sui M L, Li D X, Yang R. Phys Rev Lett, 2009; 102: 045503
[11]  Hao Y L, Yang R. Acta Metall Sin, 2005; 41: 1183
[12]  (郝玉琳, 杨 锐. 金属学报, 2005; 41: 1183)
[13]  Vuayshankar M N, Ankem S. Mater Sci Eng, 1990; A129: 229
[14]  Lee W S, Lin C F, Chen T H, Hwang H H. J Mech Behav Biomed Mater, 2008; 1: 336
[15]  Anken S, Margolin H. Metall Trans, 1986; 17A: 2209
[16]  McQueen H J, Jin N, Ryan N D. Mater Sci Eng, 1995; A190: 43
[17]  Dadras P, Thomas J F. Metall Trans, 1981; 12A: 1867
[18]  Li L, Zhou J, Duszczyk J. J Mater Process Technol, 2006; 172: 372
[19]  Morgan G C, Hammond C. Mater Sci Eng, 1987; 86: 159
[20]  McQueen H J. Microstruct Sci, 1979; 7: 71
[21]  Song H W, Zhang S H, Cheng M, Li Z X, Cao C X, Bao C L. Acta Metall Sin, 2011; 47: 462
[22]  (宋鸿武, 张士宏, 程明, 李臻熙, 曹春晓, 包春玲. 金属学报, 2011; 47: 462)
[23]  Montheillet F, Dajno D, Come N, GauTier E, Simon A, Audrerie P, Chaze A M, Levaillant Ch. In: Froes F H, Caplan I, eds., Titanium 92: Science and Technology, Warrendale: TMS, 1993: 1347
[24]  McQueen H J, Bourell D L. In: Sachdev A K, Embury J D, eds., Formability and Metallurgical Structure, Warrendale: TMS, 1987: 344
[25]  Warchomicka F, Poletti C, Stockinger M. Mater Sci Eng, 2011; A528: 8277
[26]  Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Scr Mater, 2000;43: 819
[27]  Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 2002; 23: 451
[28]  Kim J H, Semiatin S L, Lee C S. Mater Sci Eng, 2008; A485: 601
[29]  Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phys Lett, 2005; 87: 091906
[30]  Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473
[31]  Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46
[32]  Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473
[33]  Kent D, Wang G, Yu Z T, Ma X Q, Dargusch M. J Mech Behav Biomed Mater, 2011; 4: 405
[34]  Bourell D L, McQueen H J. J Mater Shaping Technol, 1987; 5: 53
[35]  Gourdet S, Montheillet F. Mater Sci Eng, 2000; A283: 274
[36]  Sakai T. J Mater Process Technol, 1995; 53: 349
[37]  Kuhlaann-Wilsdorf D, Hansen N. Scr Metall, 1991; 25: 1557
[38]  McQueen H J. Mater Sci Eng, 2004; A387-389: 203
[39]  Henshall G A, Kassner M E, McQueen H J. Metall Trans, 1992; 23A: 881
[40]  Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253
[41]  Balasubrahmanyam V V, Prasad Y V R K. Mater Sci Eng, 2002; A336: 150
[42]  Mironov S, Sato Y S, Kokawa H. Mater Sci Eng, 2010; A527: 7498
[43]  Rao K P, Presad Y V R K. J Mech Work Technol, 1986; 13: 83

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133