全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算

DOI: 10.3724/SP.J.1037.2012.00372, PP. 26-34

Keywords: 纳米级渗碳体,超快速冷却,过冷奥氏体,热力学模型,相变驱动力

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据KRC和LFG模型提出的Fe-C合金的奥氏体相变机制,系统地计算了过冷奥氏体的相变驱动力,从热力学的角度分析了过冷奥氏体分解生成纳米级渗碳体颗粒的可能性,并且在热轧后超快速冷却的条件下,发现热轧亚共析钢的组织中存在大量纳米级渗碳体弥散分布的区域,渗碳体的尺寸在十到几十纳米,实现了在无微合金元素添加的条件下渗碳体的纳米级析出.此外,在过冷奥氏体组织中先共析铁素体附近存在大量的富C区,根据平衡浓度计算,局部C的摩尔分数可达到0.04-0.08,这部分高浓度的奥氏体分解析出纳米级渗碳体的倾向性更大.

References

[1]  Ricks R, Howell P R.Acta Metall, 1983; 31: 853
[2]  Kestenbach H.J Mater Sci Technol, 1997; 13: 731
[3]  Charleux M, Poole W J, Militzer M, Deschamps A.Metall Mater Trans, 2001; 32A: 163
[4]  Kagechika H.ISIJ Int, 2006; 46: 939
[5]  Shin D H, Kim Y S, Lavernia E J.Acta Mater, 2001; 49: 2387
[6]  Fu J, Li G Q, Mao X P, Fang K M.Metall Mater Trans, 2011; 42A: 3797
[7]  Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J.Acta Mater, 2003; 51: 5555
[8]  Leeuwe Y V, Onink M, Sietsm J, Zwaag S.ISIJ Int, 2001; 41: 1037
[9]  Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E.ISIJ Int, 2004; 44: 1945
[10]  Yen H W, Huang C Y, Yang J R.Adv Mater Res, 2010; 89-91(suppl): 663
[11]  Yong Q L.Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 159(雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 159)
[12]  Yen H W, Huang C Y, Yang J R.Scr Mater, 2009; 61: 616
[13]  Kaufman L, Radcliffe S V, Cohen M.Decomposition of Austenite by Diffusional Processe.New York: Interscience, 1962: 313
[14]  Lacher J R.Proc Cambridge Phil Soc, 1937; 33: 518
[15]  Fowler R H, Guggenheim E A.Statistical Thermodynamics. New York: Cambridge University Press, 1939: 442
[16]  Wang G D.Shanghai Met, 2008; 30(2): 1(王国栋. 上海金属, 2008; 30(2): 1)
[17]  Lucas A, Simon P, Bourdon G, Herman J C, Riche P, Neutjens J, Harlet P.Steel Res Int, 2004; 75: 139
[18]  Liu Z C, Yuan Z X, Liu Y C.Solid Phase Transformation. Beijing: China Machine Press, 2010: 73(刘宗昌, 袁泽喜, 刘永长. 固态相变. 北京: 机械工业出版社, 2010: 73)
[19]  Mou Y W, Hsu T Y.Acta Metall, 1984; 32: 1469
[20]  Machlin E S.Trans TMS-AIME, 1968; 242: 1845
[21]  Aaronson H I, Domain H A, Pound G M.Trans TMS-AIME, 1966; 236: 753
[22]  Shiflet G J, Bradley J R, Aaronson H I.Metall Trans, 1978; 9A: 999
[23]  Hsu T Y.Transformation Principle. Beijing: Science Press, 1988: 61(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 61)
[24]  Kaufman L, Clougherty E V, Weiss R J.Acta Metall, 1963; 11: 323
[25]  Mogutnov B M, Tomilin I A, Shartsman L A.Thermodynamics of Fe-CMoscow: Metallurgy Press, 1972: 109
[26]  Orr R L, Chipman J.Trans TMS-AIME, 1967; 239: 630
[27]  Darken L S, Gurry R W.Physical Chemistry of Metals. New York: McGraw-Hill, 1953: 401
[28]  Freeman S, Honeycombe R W K.Met Sci, 1977; 11: 59

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133