全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

Cu56Hf27Ti17块体金属玻璃的缺口韧性

DOI: 10.3724/SP.J.1037.2013.00139, PP. 969-975

Keywords: 铜合金,金属玻璃,断裂韧性,弹性常数

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过研究Cu-Hf-Ti三元合金的玻璃形成能力对合金成分的依赖性,优化出Cu56Hf27Ti17和Cu57Hf27Ti16合金,其形成金属玻璃棒材的临界直径为5mm.采用单边缺口试样测量的Cu56Hf27Ti17金属玻璃的缺口韧性KQ为(92±10)MPa·m1/2,几乎是Cu49Hf42Al9金属玻璃(KQ=(56±9)MPa·m1/2)的一倍,是目前所知韧性最高的铜基块体金属玻璃.相对于Cu49Hf42Al9金属玻璃,Cu56Hf27Ti17金属玻璃的高韧性与其高Poisson比(ν=0.361)和低剪切模量(G=38.6GPa)关联.Cu56Hf27Ti17块体金属玻璃的高韧性表现为裂纹尖端形成大塑性区,在裂纹萌生与扩展过程中,形成大尺寸剪切滑移区和脉纹花样区.Cu56Hf27Ti17和Cu49Hf42Al9块体金属玻璃在缺口韧性上的差异表明,从Cu-Zr/Hf基合金中去除Al元素有利于金属玻璃的韧化.

References

[1]  Greer A, Ma E. MRS Bull, 2007; 32: 611
[2]  Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067
[3]  Meyers M A, Chawla K K. Mechanical Behavior of Materials. 2nd Ed., New York: Cambridge University Press, 2009: 404
[4]  Xu J, Ramamurty U, Ma E. JOM, 2010; 62: 10
[5]  Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L,Ritchie R O. Nat Mater, 2011; 10: 123
[6]  He Q, Cheng Y Q, Ma E, Xu J. Acta Mater, 2011; 59: 202
[7]  He Q, Shang J K, Ma E, Xu J. Acta Mater, 2012; 60: 4940
[8]  Gu X J, Poon S J, Shiflet G J, Lewandowski J J. Acta Mater, 2010; 58: 1708
[9]  Schroers J, Johnson W L. Phys Rev Lett, 2004; 93: 255506
[10]  Jia P, Guo H, Li Y, Xu J, Ma E. Scr Mater, 2006; 54: 2165
[11]  Dai C L, Guo H, Shen Y, Li Y, Ma E, Xu J. Scr Mater, 2006; 54: 1403
[12]  Shen Y, Ma E, Xu J. J Mater Sci Technol, 2008; 24: 149
[13]  Inoue A, Zhang W, Zhang T, Kurosaka K. J Mater Res, 2001; 16: 2836
[14]  Figueroa I A, Davies H A, Todd I. J Alloys Compd, 2007; 434-435: 164
[15]  Choi-Yim H, Conner R D. J Alloys Compd, 2008; 459: 160
[16]  Jia P, Zhu Z D, Ma E, Xu J. Scr Mater, 2009; 61: 137
[17]  Cheng Y Q, Ma E, Sheng H W. Phys Rev Lett, 2009; 102: 245501
[18]  Zhang L, Cheng Y Q, Cao A J, Xu J, Ma E. Acta Mater, 2009; 57: 1154
[19]  Cheng Y Q, Sheng H W, Ma E. Phys Rev, 2008; 78B: 014207
[20]  Lewandowski J J, Wang W H, Greer A L. Philos Mag Lett, 2005; 85: 77
[21]  Lewandowski J J, Gu X J, Nouri A S, Poon S J, Shiflet G J. Appl Phys Lett,2008; 92: 091918
[22]  Conner R D, Rosakis A J, Johnson W L, Owen D M. Scr Mater, 1997; 37: 1373
[23]  Demetriou M D, Kaltenboeck G, Suh J Y, Garrett G, Floyd M, Crewdson C,
[24]  Hofmann D C, Kozachkov H, Wiest A, Schramm J P, Johnson W L. Appl Phys Lett, 2009; 95: 041907
[25]  Suh J Y, Conner R D, Kim C P, Demetriou M D, Johnson W L. J Mater Res, 2010; 25: 982
[26]  Lowhaphandu P, Lewandowski J J. Scr Mater, 1998; 38: 1811
[27]  Henann D L, Anand L. Acta Mater, 2009; 57: 6057
[28]  Kawashima A, Kurishita H, Kimura H, Zhang T, Inoue A. Mater Trans, 2005; 46: 1725
[29]  Chen H S, Krause J T, Coleman E. J Non-Cryst Solids, 1975; 18: 157
[30]  Wang S G, Shi L L, Xu J. J Mater Res, 2011; 26: 923
[31]  Zhu Z D, Jia P, Xu J. Scr Mater, 2011; 64: 785
[32]  Johnson W L, Samwer K. Phys Rev Lett, 2005; 95: 195501
[33]  He Q, Xu J. J Mater Sci Technol, 2012; 28: 1109
[34]  Johnson W L, Demetriou M D, Harmon J S, Lind M L, Samwer K. MRS Bull, 2007; 32: 644
[35]  Demetriou M D, Harmon J S, Tao M, Duan G, Samwer K, Johnson W L. Phys Rev Lett, 2006; 97: 065502
[36]  Cheng Y Q, Cao A J, Ma E. Acta Mater, 2009; 57: 3253

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133