全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响

DOI: 10.3724/SP.J.1037.2013.00499, PP. 1423-1427

Keywords: 高Nb铸造TiAl合金,高温强度,室温塑性

Full-Text   Cite this paper   Add to My Lib

Abstract:

固定Nb含量在7%(摩尔分数),研究了Al含量变化对高Nb铸造TiAl合金高温强度和室温塑性的影响,并根据铸造组织的差异对不同Al含量合金表现出的性能特点进行分析讨论.结果表明,Al含量为46%-49%的高Nb铸造TiAl合金均具有优异的高温强度.其中,高Al含量合金更具高温强度优势.分析认为,在高Nb合金化产生的固溶强化作用基础上,层片组织处于拉伸硬取向以及应变诱发的形变孪晶强化也有可能是高Al含量高Nb铸造TiAl合金900℃具有优异强度的重要机制.层片组织相对细小的Ti-46Al-7Nb-2.5V-1.0Cr合金室温塑性相对较好,而层片组织处于拉伸硬取向的高Al含量合金室温拉伸塑性很低,但有可能通过后续热处理改善其室温塑性.

References

[1]  Zhang W J, Deevi S C, Chen G L. Intermetallics, 2002; 10: 403
[2]  Paul J D H, Appel F, Wagner R. Acta Mater, 1998; 46: 1075
[3]  Appel F, Oehring M, Wagner R. Intermetallics, 2000; 8: 1283
[4]  Brossmann U, Oehring M, Appel F. In: Hemker K J, Dimiduk D M, Clemens H,Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 191
[5]  Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M. Intermetallics, 2005; 13: 971
[6]  Inui H, Oh M H, Nakamura A, Yamaguchi M. Acta Metall Mater, 1992; 40: 3095
[7]  Yan L, Tang D, Mi Z L, Guo J. Hot Working Technol, 2005; (8): 15
[8]  (严玲, 唐狄, 米振莉, 郭锦. 热加工工艺, 2005; (8): 15)
[9]  Li Z X. PhD Dissertation, Beijing Institute of Aeronautical Materials, 2000
[10]  (李臻熙. 北京航空材料研究院博士学位论文, 2000)
[11]  Chen G L, Lin J P, Song X P, Wang Y L, Ren Y R. In: Kim Y W, Carneiro T eds.,Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 153
[12]  Jiang M Z, Zhang J. J Iron Steel Res, 2003; 15: 552
[13]  (姜明智, 张继. 钢铁研究学报, 2003; 15: 552)
[14]  Chen G L, Zhang W J, Liu Z C, Li S J. In: Kim Y W, Dimiduk D M,Loretto M H eds., Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 31
[15]  Liu Z C, Lin J P, Li S J, Chen G L. Intermetallics, 2002; 10: 653
[16]  Appel F, Oehring M, Paul J D H, Lorenz U. In: Hemker K J, Dimiduk D M,Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 63
[17]  Yoshihara M, Kim Y W. In: Kim Y W, Dimiduk D M, Loretto M H eds.,Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 753
[18]  Zhang W J, Liu Z C, Chen G L, Kim Y W. Mater Sci Eng, 1999; A271: 416
[19]  Imaev V M, Imaev R M, Oleneva T I, Khismatullin T G. Phys Met Metall, 2008; 106: 641
[20]  Imayev V, Imayev R, Khismatullin T, Guther V, Beck W, Fecht H J. Scr Mater,2007; 57: 193
[21]  Jarvie D J, Voss D. Mater Sci Eng, 2005; A413--414: 583
[22]  Wu X H. Intermetallics, 2006; 14: 1114
[23]  Oehring M, Stark A, Paul J D H, Lippmann T, Pyczak F. Intermetallics, 2013; 32: 12
[24]  Jung J Y, Park J K, Chun C H. Intermetallics, 1999; 7: 1033
[25]  Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W. Intermetallics, 2008; 16: 827
[26]  Witusiewicz V T, Bondar A A, Hecht U, Rex S, Velikanova T Y. J Alloys Compd,2008; 465: 64
[27]  Blackburn M J. In: Jaffee R I, Promisel N E eds.,The Science, Technology and Application of Titanium. Oxford: Pergamon Press, 1970: 663
[28]  Kim Y W. JOM, 1989; 41(7): 24
[29]  Appel F, Paul J D H, Oehring M, Buque C, Klinkenberg C, Carneiro T. In:Kim Y W, Carneiro T eds., Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 139
[30]  Zhang H X, Wu C X, Yang K. J Mater Eng, 2009; (S1): 267
[31]  (张华霞, 吴昌新, 杨坤. 材料工程, 2009; (S1): 267)
[32]  Bor H Y, Wei C N, Jeng R R, Ko P Y. Mater Chem Phys, 2008; 109: 334

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133