全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

点缺陷对γ-TiAl(100)表面O原子吸附和扩散影响的第一性原理研究

DOI: 10.3724/SP.J.1037.2013.00408, PP. 1387-1391

Keywords: &gamma,-TiAl,(100)表面,Si掺杂,W掺杂,空位,O的扩散

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用基于密度泛函理论的第一性原理计算了γ-TiAl(100)表面附近空位、Si和W掺杂的形成能,以及它们对O原子在该表面附近吸附和扩散的影响.计算结果表明,在掺杂体系中,Si原子更容易替代表面第1层Al原子的位置,而W原子更容易替代表面第2层Ti原子的位置,且2者均使其近邻吸附O原子的吸附能升高.因此,Si更容易偏析在表面第1层上,而W更容易偏析在表面第2层上,且抑制了O原子在γ-TiAl(100)表面的吸附.在空位缺陷体系中,表面第1层Ti原子空位比Al原子空位更易形成.在干净表面、Ti空位表面、Si掺杂和W掺杂表面体系中,O原子从表面上到表面下第2层扩散的能垒分别为1.98,1.34,2.53和2.69eV,相对于干净表面,Ti空位缺陷的形成使得O原子在γ-TiAl(100)表面附近的扩散更加容易,而Si和W掺杂使得O原子在γ-TiAl(100)表面上的扩散更加困难.

References

[1]  Kim Y W. JOM, 1994; 46(7): 30
[2]  Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1990; 34(1): 1
[3]  Yamaguchi M, Inui H, Ito K. Prog Mater Sci, 2000; 48: 307
[4]  Loria E A. Intermetallics, 2001; 9: 997
[5]  Froes F H, Suryanarayana C, Eliezer D. J Mater Sci, 1992; 27: 5113
[6]  Clemens H, Kestler H. Adv Eng Mater, 2000; 2: 551
[7]  Lang C, Schutze M. Oxid Met, 1996; 46: 255
[8]  Rahmel A, Quadakkers W J, Schutze M. Mater Corros, 1995; 46: 217
[9]  Wang L, Shang J X, Wang F H, Zhang Y. Acta Mater, 2012; 61: 1726
[10]  Kresse G, Hafner J. Phys Rev, 1993; 48B: 13115
[11]  Blochl P E. Phys Rev, 1994; 50B: 17953
[12]  Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188
[13]  Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C,Phys Rev, 1992; 46B: 6671
[14]  Brandes E A. Smithell Metals Reference Book. 6Ed., United Kingdom: Butterworths, 1983: 1
[15]  Liu S Y, Shang J X, Wang F H, Zhang Y. Phys Rev, 2009; 79B: 075419
[16]  Henkelman G, Uberuaga B P, Jonsson H. J Chem Phys, 2000; 113: 9901
[17]  Kohn W, Sham L J. Phys Rev, 1965; 140: A1133
[18]  Zhao C Y. Master Thesis, Capital Normal University, Beijing, 2012
[19]  (赵春英. 首都师范大学硕士学位论文, 北京, 2012)
[20]  Lang C, Sch\"{utze M. Mater Corros, 1997; 48(1): 13
[21]  Taniguchi S, Juso H, Shibata T. Oxid Met, 1998; 49: 325
[22]  Toshio N, Takeshi I, Mamoru Y, Takayuki Y. Intermetallics, 2000; 8: 371
[23]  Taniguchi S, Zhu Y C, Kazuhisa F, Nobuya I. Oxid Met, 2002; 58: 375
[24]  Shida Y, Anada H. Mater Trans, 1994; 35: 623
[25]  Kim B G, Kim G M, Kim C J. Scr Metall Mater, 1995; 33: 1117
[26]  Taniguchi S, Uesaki K, Zhu Y C, Matsumoto Y, Shibata T. Mater Sci Eng, 1999; A266: 267
[27]  Taniguchi S, Kuwagawa T, Zhu Y C, Matsumoto Y, Shibata T. Mater Sci Eng, 2000; A277: 229
[28]  Li H, Liu L M, Wang S Q, Ye H Q. Acta Metall Sin, 2006; 42: 897
[29]  (李虹, 刘利民, 王绍青, 叶恒强. 金属学报, 2006; 42: 897)
[30]  Liu S Y, Shang J X, Wang F H, Zhang Y. J Phys Condens Matter, 2009; 21: 225005
[31]  Song Y, Dai J H, Yang R. Surf Sci, 2012; 606: 857
[32]  Wang L, Shang J X, Wang F H, Zhang Y, Chroness A. J Phys Condens Matter, 2011; 23: 265009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133