全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*

DOI: DOI:10.3724/SP.J.1037.2013.00616, PP. 156-168

Keywords: 剧烈塑性变形,纳米材料,位错,孪晶,应变强化,应变软化

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了剧烈塑性变形引起的块体纳米金属材料的结构和力学性能演变.以电化学沉积法制备的fcc结构纳米晶Ni-20%Fe(质量分数)合金为研究对象,通过对其进行不同应变量的高压扭转实验,系统分析了变形引起的结构和力学性能演变.结构表征结果表明(1)变形引发纳米晶Ni-Fe合金晶粒旋转,实现晶粒长大.同时,晶粒长大过程伴随着位错密度、孪晶密度的演变;(2)存在一个最有利于变形孪晶生成的晶粒尺寸范围(45~100nm),在这个晶粒尺寸范围之外,去孪晶起主导作用使原有的生长孪晶或变形孪晶消失;(3)位错密度是影响位错与孪晶反应的新的影响因素.当发生孪晶的晶粒内位错密度低时,位错可完全穿过孪晶界,部分穿过孪晶界,或被孪晶界吸收;发生孪晶的晶粒内位错密度高时,大量位错缠绕并堆积在孪晶界附近,形成应力集中,破坏孪晶界原有的共格性.为释放局部应力,将从孪晶界的另一侧发射不全位错形成层错和二次孪晶;(4)在塑性变形导致的晶粒长大过程中,原先偏聚于消失了的晶界上的C和S沿残留晶界扩散并继续偏聚于晶界上.结构与力学性能关系结果表明随着应变量的增加,应变强化、应变软化交替出现.位错密度对硬度的演变起主导作用,其它结构演变(如孪晶密度的变化和晶粒尺寸变化)对硬度的演变起次要作用.

References

[1]  Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2]  Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[3]  Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4]  Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[5]  Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[6]  Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
[7]  Wang K, Tao N R, Liu G, Lu J. Acta Mater, 2006; 54: 5281
[8]  Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[9]  Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[10]  Mohamed F A. Acta Mater, 2003; 51: 4107
[11]  Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Ringer S P, Horita Z, Langdon T G, Zhu Y T, Mater Sci Eng, 2010; A527: 4959
[12]  Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[13]  Liao X Z, Kilmanetov A R, Valiev R Z, Gao H S, Li S D, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
[14]  Wang Y B, Ho J C, Liao X Z, Li H Q, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 011908
[15]  Li L, Ungar T, Wang Y D, Fan G J, Yang Y L, Jia N, Ren Y, Tichy G, Lendvai J, Choo H, Liaw P K. Scr Mater, 2009; 60: 317
[16]  Fan G J, Fu L F, Choo H, Liaw P K, Browning N D. Acta Mater, 2006; 54: 4781
[17]  Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V, Hemker K J. Acta Mater, 2006; 54: 2253
[18]  Fan G J, Wang Y D, Fu L F, Choo H, Liaw P K, Ren Y, Browning N D. Appl Phys Lett, 2006; 88: 171914
[19]  Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[20]  Li L, Ungar T, Wang Y D, Morris J R, Tichy G, Lendvai J, Yang Y L, Ren Y, Choo H, Liaw P K. Acta Mater, 2009; 57: 4988
[21]  Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2010; 64: 327
[22]  Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Phys Rev, 2012; 84B: 235401
[23]  Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 3398
[24]  Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 4807
[25]  Li H Q, Ebrahimi F. Mater Sci Eng, 2003; A347: 93
[26]  Ni S, Sha G, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhu Y T, Langdon T G, Ringer S P. Mater Sci Eng, 2011; A528: 7500
[27]  Sansoz F, Dupont V. Appl Phys Lett, 2006; 89: 111901
[28]  Farkas D, Froseth A, Swygenhoven H V. Scr Mater, 2006; 55: 695
[29]  Shan Z W, Stach E A, Wiezorek J M K, Knap J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[30]  Wang Y B, Li B Q, Sui M L, Mao S X. Appl Phys Lett, 2008; 92: 011903
[31]  Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
[32]  Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
[33]  Rodney D, Phillips R. Phys Rev Lett, 1999; 82: 1704
[34]  Wu X L, Zhu Y T. Phys Rev Lett, 2008; 101: 025503
[35]  Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[36]  Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W, Zhu Y T. Appl Phys Lett, 2003; 83: 632
[37]  Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2002; 50: 5005
[38]  Zhang J Y, Liu G, Wang R H, Li J, Sun J, Ma E. Phys Rev, 2010; 81B: 172104
[39]  Zhu Y T, Liao X Z, Srinivasan S G, Lavernia E J. J Appl Phys, 2005; 98: 034319
[40]  Wen H M, Zhao Y H, Li Y, Ertorer O, Nesterov K M, Islamgaliev R K, Valiev R Z, Lavernia E J. Philos Mag, 2010; 90: 4541
[41]  Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[42]  Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[43]  Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[44]  Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[45]  Wang Y B, Wu B, Sui M L. Appl Phys Lett, 2008; 93: 041906
[46]  Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
[47]  Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 4135
[48]  Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[49]  Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H. Scr Mater, 2006; 54: 1163
[50]  Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[51]  Rice J R. J Mech Phys Solid, 1992; 40: 239
[52]  Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[53]  Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Acta Mater, 2012; 60: 3181
[54]  Huang J Y, Zhu Y T, Liao X Z, Valiev R Z. Philos Mag Lett, 2004; 84: 183
[55]  Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[56]  Ivanisenko Y, Maclaren I, Sauvage X, Valiev R Z, Fecht H J. Acta Mater, 2006; 54: 1659
[57]  Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A, Valiev R Z. Acta Mater, 2006; 54: 3933
[58]  Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, Valiev R Z. Acta Mater, 2004; 52: 4469
[59]  Ivanisenko Yu V, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 433
[60]  Shen H, Li Z, Günther B, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 385
[61]  Wang Y B, Liao X Z, Zhao Y H, Cooley J C, Horita Z, Zhu Y T. Appl Phys Lett, 2013; 102: 231912
[62]  Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[63]  Okamoto H. Phase Diagram for Binary Alloy. OH, USA: ASM International, 2000: 1
[64]  Gall R L, Liao G, Saindrenan G. Scr Mater, 1999; 41: 427
[65]  Gall R L, Quérard E, Saindrenan G, Mourton H, Roptin D. Scr Mater, 1996; 35: 1175
[66]  Parthasarathy T A, Shewmon P G. Scr Metall, 1983; 17: 943
[67]  Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. J Mater Res, 2002; 17: 5
[68]  Li N, Wang J, Huang J Y, Misra A, Zhang X. Scr Mater, 2011; 64: 149
[69]  Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P. Acta Mater, 2010; 58: 2262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133