OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
纳米晶Al薄膜Bauschinger效应的分子动力学模拟*
DOI: DOI:10.3724/SP.J.1037.2013.00737, PP. 219-225
Keywords: 纳米晶Al薄膜,Bauschinger效应,位错,塑性变形,原子尺度模拟
Abstract:
运用大规模的分子动力学模拟研究了厚度和晶粒取向对纳米晶Al薄膜Bauschinger效应的影响.模拟结果表明晶粒取向的不均匀性对早期Bauschinger效应及相关塑性变形机制有显著的影响.相对于没有织构的薄膜试样而言,尽管晶粒尺寸、形状和厚度相同,具有(110)织构的薄膜表现出较轻微的Bauschinger效应.同时,分子动力学模拟也揭示早期Bauschinger效应起源于卸载过程中位错的反向运动和由于位错反应造成位错密度的降低.这些位错机制是由加载过程中产生的不均匀变形引起的内在残余应力所驱动的.
References
[1] | Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99(卢 柯, 周 飞. 金属学报, 1997; 33: 99)
|
[2] | Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
|
[3] | Yamakov V, Wolf D, Philpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
|
[4] | Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
|
[5] | Van Swygenhoven H, Weertman J R. Mater Today, 2006; 9: 24
|
[6] | Wu X, Zhu Y T, Chen M W, Ma E. Scr Mater, 2006; 54: 1685
|
[7] | Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
|
[8] | Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
|
[9] | Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
|
[10] | Yang W, Wang H T. J Mech Phys Solids, 2004; 52: 875
|
[11] | Wang H T, Yang W. J Mech Phys Solids, 2004; 52: 1151
|
[12] | Hall E O. Proc Phys Soc, 1951; 51B: 747
|
[13] | Petch H J. J Iron Steel Inst, 1953; 174: 25
|
[14] | Chokshi A H, Rosen A, Karch J, Gleiter H. Scr Metall, 1989; 23: 1679
|
[15] | Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
|
[16] | Jiang Z, Liu X, Li G, Jiang Q, Lian J. Appl Phys Lett, 2006; 88: 143115
|
[17] | Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
|
[18] | Wang Y M, Hamza A V, Ma E. Acta Mater, 2006; 54: 2715
|
[19] | Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
|
[20] | Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
|
[21] | Gianola D S, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker K J. Acta Mater, 2006; 54: 2253
|
[22] | Rajagopalan J, Han J H, Saif M T A. Science, 2007; 315: 1831
|
[23] | Rajagopalan J, Han J H, Saif M T A. Scr Mater, 2008; 59: 921
|
[24] | Li X Y, Wei Y J, Yang W, Gao H J. Proc Natl Acad Sci USA, 2009; 106: 16108
|
[25] | Margolin H, Hazaveh F, Yaguchi H. Scr Metall, 1978; 12: 1141
|
[26] | Ono N, Tsuchikawa T, Nishimura S, Karashima S. Mater Sci Eng, 1983; 59: 223
|
[27] | Baker S P, Keller-Flaig R M, Shu J B. Acta Mater, 2003; 51: 3019
|
[28] | Xiang Y, Vlassak J J. Scr Mater, 2005; 53: 177
|
[29] | Nicola, L, Xiang Y, Vlassak J J, Van der Giessen E, Needleman A. J Mech Phys Solids, 2006; 54: 2089
|
[30] | Stoltz R E, Pelloux R M. Metall Trans, 1976; 7A: 1295
|
[31] | Aran A, Demirkol M, Karabulut A. Mater Sci Eng, 1987; 89: L35
|
[32] | Rajagopalan J, Rentenberger C, Karnthealer H P, Dehm G, Saif M T A. Acta Mater, 2010; 58: 4772
|
[33] | Espinosa H D, Panico M, Berbenni S, Schwarz K W. Int J Plast, 2006; 22: 2091
|
[34] | Fang H, Horstemeyer M F, Baskes M I, Solanki K. Comput Method Appl Mech Eng, 2004; 193: 1789
|
[35] | Mishin M, Farkas D, Mehl M J, Papaconstantopoulos D A. Phys Rev, 1999; 59B: 3393
|
[36] | Nose S A. J Chem Phys, 1984; 81: 511
|
[37] | Tuckerman M, Berne B J, Mantyna G J. J Chem Phys, 1992; 97: 1990
|
[38] | Van Swygenhoven H, Farkas D, Caro A. Phys Rev, 2000; 62B: 831
|
[39] | Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2002; 1: 45
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|