全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

基于屈服平台理论开发的600MPa级高强塑性螺纹钢的研究*

DOI: 10.3724/SP.J.1037.2013.00768, PP. 439-446

Keywords: 600,MPa级螺纹钢,细晶强化,屈服平台延伸率

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用冷轧与热处理相结合的方式研究了铁素体晶粒尺寸对力学性能的影响.将C含量为0.1%(质量分数)的板材经不同道次的冷轧,随后在600℃进行再结晶退火5~300min,获得晶粒直径在5.2~40.4μm之间的铁素体.室温拉伸实验结果表明,细化铁素体晶粒不仅提高了强度,还有效增加了屈服平台延伸率.SEM观察表明,细化晶粒促进了塑性形变在不同晶粒间的均匀性,宏观上累积成了较长的屈服平台.结合Hollomon和Hall-Petch公式导出屈服平台延伸率δL与晶粒尺寸dα之间存在的定量关系,并确定了公式的适用范围.采用狭缝喷水实现快速冷却的新方法对HRB400钢筋进行热处理,不仅获得细晶铁素体,而且得到高比例的非平衡珠光体,使材料在获得高强度的同时还具有相当的塑性,由此开发出具有明显的屈服平台的600MPa级高强塑性螺纹钢,该商业用钢的成功开发进一步印证了理论分析的正确性.

References

[1]  Wen C S, Rong Y H, Xu Z Y. Trans Mater Heat Treat, 2004; 25: 161
[2]  Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[3]  Takaki S, Kawasaki K, Kimura Y. J Mater Proc Technol, 2001; 117: 359
[4]  Song R, Ponge D, Raabe D. Acta Mater, 2005; 53: 4881
[5]  Tsuji N, Kamikawa N, Ueji R, Takata N, Koyama H, Terada D. ISIJ Int, 2008; 48: 1114
[6]  Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K. Mater Sci Eng, 2008; A488: 446
[7]  Zhao M, Yin F, Hanamura T, Nagai K, Atrens A. Scr Mater, 2007; 57: 857
[8]  Miller R L. Metall Trans, 1972; 3: 905
[9]  Shu D L. Mechanical Property of Engineering Materials. Beijing: Mechanical Industry Press, 2003: 19(束德林. 工程材料力学性能. 北京: 机械工业出版社, 2003: 19)
[10]  Schwarb R, Ruff V. Acta Mater, 2013; 61: 1798
[11]  Bannister A C. Contribution to Sub-Task 2.3: Assessment of the Occurrence and Significance of Yield Plateaus in Structural Steels. Report No.SINTAP/BS/19, Brite-Euram BE 95-1426, Rotherham: British Steel Plc, 1998: 7
[12]  Kot R A, Morris J W. Structure and Properties of Dual-Phase Steels. New York: The Metallurgical Society of AIME, 1979: 304
[13]  Kumar A, Singh S B, Ray K K. Mater Sci Eng, 2008; A474: 270
[14]  Cottrell A H, Bilby B A. Proc Phys Soc, 1949; 62A: 49
[15]  Hale K F, McLean D. J Iron Steel Inst, 1963; 201: 337
[16]  Tekin E, Kelly P M. J Iron Steel Inst, 1965; 203: 715
[17]  Dollins C, Wert C. Acta Metall, 1969; 17: 711
[18]  Cottrell A H, Stokes R J. Proc Roy Soc, 1955; 233A: 17
[19]  Tsuchida N, Tomota Y, Nagai K, Fukaura K. Scr Mater, 2006; 54: 57
[20]  Fujita H, Miyazaki S. Acta Metall, 1978; 26: 1273
[21]  Schulson E M, Weihs T P, Viens D V, Baker I. Acta Metall, 1985; 33: 1587
[22]  Hall E O. Yield Point Phenomena in Metals and Alloys. London: Macmillan, 1970: 31
[23]  Hall E O. Proc Phys Soc London, 1951; 64B: 747
[24]  Petch N J. J Iron Steel Inst, 1953; 174: 25
[25]  Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. 2nd Ed., Shanghai: Shanghai Jiao Tong University Press, 2006: 180(胡赓祥, 蔡 珣, 戎咏华. 材料科学基础. 第二版, 上海: 上海交通大学出版社, 2006: 180)
[26]  Chen N L, Rong Y H, Zuo X W, Guo Z H. Chin Pat, ZL 2011 1 0453958.2, 2013(陈乃录, 戎咏华, 左训伟, 郭正洪. 中国专利, ZL 2011 1 0453958.2, 2013)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133