全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Nb对中碳钢相变和组织细化的影响*

DOI: 10.3724/SP.J.1037.2013.00538, PP. 400-408

Keywords: 中碳钢,Nb微合金化,组织细化,CCT曲线,析出物

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对无Nb和添加0.06%Nb的2种中碳钢,研究了Nb对0.47%C中碳钢相变及组织细化的影响规律.2种实验钢正火组织均为铁素体+珠光体,Nb微合金化能够有效细化中碳钢的奥氏体晶粒,从而导致正火后组织中铁素体体积分数明显增加.含Nb中碳钢的屈服强度相对无Nb钢提高了18%(70MPa),抗拉强度基本保持不变,-20℃冲击韧性则由7J提高到19J,呈现显著提高.此外,由连续冷却转变(CCT)曲线发现,Nb微合金化中碳钢可在冷速≤10℃/s时获得较高体积分数的铁素体,因此,可保证工件在较大冷速范围内不出现大块珠光体或贝氏体/马氏体组织.结合TEM观察发现,Nb元素以微小析出物Nb(C,N)的状态均匀分布在钢中.Nb(C,N)析出物能有效细化奥氏体晶粒,并因此提高铁素体形核率,这是Nb在中碳钢中影响相变并提高韧性的主要机制.

References

[1]  Zerbst U, M?dler K, Hintze H. Eng Fract Mech, 2005; 72: 163
[2]  Ekberg A, Kabo E. Wear, 2005; 258: 1288
[3]  Cui Y H, Zhang J P, Su H, Jiang B. Res Iron Steel, 2005; 114: 53(崔银会, 张建平, 苏 航, 江 波. 钢铁研究, 2005; 114: 53)
[4]  Miao C L, Shang C J, Zhang G D, Subramanian S V. Mater Sci Eng, 2010; A527: 4985
[5]  Gong W M, Yang C F, Zhang Y Q. J Iron Steel Res, 2006; 18(10): 49(龚维幂, 杨才福, 张永权. 钢铁研究学报, 2006; 18(10): 49)
[6]  Hansen S S, Krauss G, Banerji S K. Proc Int Conf on Welding Metallurgy of Structural Steels, Warrendale, PA: TMS-AIME, 1987: 155
[7]  Pickering F B, Garbarz B. Mater Sci Technol, 1989; 5: 227
[8]  Sakamoto H, Toyama K, Hirakawa K. Mater Sci Eng, 2000; A285: 288
[9]  Wu S, Li X C, Shang C J, Han J S, Wang Q D. Trans Mater Heat Treat, 2012; 33(7): 100(吴 斯, 李秀程, 尚成嘉, 韩建生, 王群娣. 材料热处理学报, 2012; 33(7): 100)
[10]  Lan Y J, Li D Z, Li Y Y. Acta Mater, 2004; 56: 1721
[11]  Li X C, Xia D X, Wang X L, Wang X M, Shang C J. Sci China Technol Sci, 2013; 56(1): 66
[12]  Fu J Y. Iron Steel, 2005; 40(8): 1(付俊岩. 钢铁, 2005; 40(8): 1)
[13]  Tither G. Proceeding of the International Symposium Niobium 2001, Orlando: Niobium 2001 Limited, 2001: 1
[14]  GB/T 6394-2002. Metal-Methods for Estimating the Average Grain Size. Beijing: Standardization Administration of the People's Republic of China, 2002(国标GB/T 6394-2002. 金属平均晶粒度测定法. 北京: 国家标准化管理委员会, 2002)
[15]  Narita K. Kobe Steel Eng Rep, 1966; 16: 179
[16]  Zheng L, Yong Q L, Sun Z B. Acta Metall Sin, 1987; 23: 547(郑 鲁, 雍岐龙, 孙珍宝. 金属学报, 1987; 23: 547)
[17]  Gladman T. Proc Roy Soc, 1966; 294: 298
[18]  Gladman T. HSLA Steels. Warrendale, PA: TMS-AIME, 1992: 3
[19]  Gladman T. Mater Sci Technol, 1999; 15(1): 30
[20]  Lee K J, Kang K B, Lee J K, Kwon O, Chang R W. Proceedings of the International Conference in Mathematical Modelling of Hot Rolling of Steel, Hamilton, Canada: AIME, 1990: 435
[21]  Mecozzi M G, Sietsma J, Zwaag S. Acta Mater, 2006; 54: 1431
[22]  Gladman T. Recrystallization and Grain Growth of Multi-phase and Particle Containing Materials. Oskilde, Denmark: Riso National Laboratory, 1980: 183
[23]  Kop T A, Sietsma J, Zwaag S. Mater Sci Technol, 2001; 36: 1569
[24]  Wagner V, Starke P, Kerscher E, Eifler D. Int J Fatigue, 2011; 33: 69
[25]  Ahlstr?m J, Karlsson B. Wear, 1999; 232: 1
[26]  Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006: 145(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 145)
[27]  Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)
[28]  Aglan H A, Liu Z Y, Hassan M F, Fateh M. J Mater Process Technol, 2004; 151: 268
[29]  Shang C J, Wu S, Li X C, He F, Wang X M. Chin Pat, 201210065521.6, 2012(尚成嘉, 吴 斯, 李秀程, 贺 飞, 王学敏. 中国专利, 201210065521.6, 2012)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133