全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Ti0.7Zr0.3(Cr1-xVx)2合金的结构和贮氢性能*

DOI: 10.3724/SP.J.1037.2013.00637, PP. 454-462

Keywords: 贮氢,Laves相,固溶体相,P-C-T曲线,热力学,热重分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用XRD和SEM分析了Ti0.7Zr0.3(Cr1-xVx)2(x=0.1,0.2,0.3,0.4)合金的相组成、晶体结构和元素成分;采用Sieverts装置、差热和热重分析仪(DTA-TG)测量了合金的活化性能、吸放氢P-C-T曲线、热力学参数及高温放氢特征.结果表明,合金为多相组织,存在C36(P63/mmc)和C15(Fd3m)2种Laves相和几种晶格常数近似的钒基bcc固溶体相.当V含量较低时,合金主要由C36型Laves相和少量bcc固溶体相组成.随着V含量增加,C36型转变为C15型Laves相,其中第3种(C层)堆垛存在几率增加,而且合金中bcc固溶体相含量增加.合金在2MPa氢压和常温下能迅速活化;表面氧化后,x=0.1和0.2合金仍表现出优异的活化性能.随着V含量增加,合金的贮氢量增加、平台压力减小.合金氢化的相对偏摩尔焓变(ΔH)和熵变(ΔS)的变化范围为-7~-28kJ/mol和-35~-95J/(mol·K).DTA-TG分析表明,合金氢化物分解主要出现在500~600K温度区间,并呈现对应不同类型氢化物的2个分解温度,加热到800K时合金中稳定的氢化物完全分解.

References

[1]  Profio P D, Arca S, Rossi F, Filopponi M. Int J Hydrogen Energy, 2009; 34: 9173
[2]  Kim J H, Lee H, Hwang K T, Han J S. Int J Hydrogen Energy, 2009; 34: 9424
[3]  Park J M, Lee J Y. J Less-Common Met, 1990; 160: 259
[4]  Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[5]  Park J G, Jang H Y, Han S C, Lee P S, Lee J Y. J Alloys Compd, 2001; 325: 293
[6]  Bououdina M, Enoki H, Akiba E. J Alloys Compd, 1998; 281: 290
[7]  Sakintuna B, Lamari-Darkrim F, Hirscher M. Int J Hydrogen Energy, 2007; 32: 1121
[8]  Guo X M, Wu E D. J Alloys Compd, 2008; 455: 191
[9]  Guo X M. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008(郭秀梅.中国科学院金属研究所博士学位论文, 沈阳, 2008)
[10]  Liu X P, Cuevas F, Jiang L J, Latroche M, Li Z N, Wang S M. J Alloys Compd, 2009; 476: 403
[11]  Tamura T, Tominaga Y, Matsumoto K, Fuda T, Kuriiwa T, Kamegawa A, Takamura H, Okada M. J Alloys Compd, 2002; 330-332: 522
[12]  Pei P, Song X P, Zhao M, Zhang P L, Chen G L. Rare Met Mater Eng, 2008; 37: 1419
[13]  Gao M X, Miao H, Zhao Y, Liu Y F, Pan H G. J Alloys Compd, 2009; 484: 249
[14]  Wu E D, Li W H, Li J. Int J Hydrogen Energy, 2012; 37: 1509
[15]  Akiba E, Iba H. Intermetallics, 1998; 6: 461
[16]  Miao H, Gao M X, Liu Y F, Lin Y, Wang J H, Pan H G. Int J Hydrogen Energy, 2007; 32: 3947
[17]  Stein F, Palm M, Sauthoff G. Intermetallics, 2004; 12: 713
[18]  Fujitani S, Yonezu I, Saito T, Furukawa N. J Less-Common Met, 1991; 172-174: 220
[19]  Mendelsohn M H, Gruen D M, Dwight A E. J Less-Common Met, 1979; 63: 193
[20]  Kabutomori T, Takeda H, Wakisaka Y, Ohnishi K. J Alloys Compd, 1995; 231: 528
[21]  Hang Z M, Xiao X Z, Tan D Z, He Z G, Li W P, Li S Q, Chen C P, Chen L X. Int J Hydrogen Energy, 2010; 35: 3080
[22]  Manchester F D, Khatamian D. Mater Sci Forum, 1988; 31: 261
[23]  Hong C M, Han D G, Lin Q Z. J Less-Common Met, 1991; 172-174: 1044
[24]  Kay B D, Peden C H, Goodman D W. Phys Rev, 1986; 34B: 817
[25]  Rudman P S. J Appl Phys, 1979; 50: 7195
[26]  Muthukumar P, Satheesh A, Linder M, Merta R, Groll M. Int J Hydrogen Energy, 2009; 34: 7253
[27]  Mouri T, Iba H. Mater Sci Eng, 2002; A329-331: 346
[28]  Okada M, Kuriiwa T, Tamura T, Takamura H, Kamegawa A. J Alloys Compd, 2002; 330-332: 511
[29]  Krishna Kumar M, Ramaprabhu S. Int J Hydrogen Energy, 2007; 32: 1890
[30]  Muthukumar P, Linder M, Mertz R, Laurien E. Int J Hydrogen Energy, 2009; 34: 1873
[31]  Li G, Nishimiya N, Satoh H, Kamegashira N. J Alloys Compd, 2005; 393: 231
[32]  Kesavan T R, Ramaprabhu S, Rama Rao K V S, Das T P. J Alloys Compd, 1996; 244: 164

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133