全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Ni对Co-Al-W基合金时效组织演变和g′相溶解行为的影响*

DOI: 10.3724/SP.J.1037.2013.00786, PP. 845-853

Keywords: Co-Al-W基合金,Ni,显微组织,显微硬度

Full-Text   Cite this paper   Add to My Lib

Abstract:

以4种不同Ni含量(15%~45%,原子分数)的新型g′相强化Co-Al-W基合金为研究对象,通过时效与高温热处理显微组织分析以及显微硬度测试,研究了Ni对相转变温度、g/g′两相组织演变、g′相高温溶解行为和显微硬度的影响.结果表明随着Ni含量的增加,g′相溶解温度升高,固相线温度未发生明显变化.4种合金经900℃,50h热处理后,基体均为g/g′两相组织;随着Ni含量的增加,g′相形貌由立方形逐渐向近似球形转变,g′相体积分数不断降低.经300h长时间热处理后,合金的g′相形貌没有明显改变,g′相体积分数出现不同程度的降低.对900℃,300h热处理的合金进行970~1060℃高温处理后,g′相体积分数随着热处理温度的升高而逐渐减少,并最终全部溶解而消失;低Ni含量(15%和25%)合金和高Ni含量(35%和45%)合金的g′相形貌分别转变为球形和立方形.900℃,50h和300h显微硬度测试结果表明随着Ni含量的增加,合金的硬度降低;热处理时间的延长使合金的硬度小幅增加.

References

[1]  Bauer A, Neumeier S, Pyczak F, G?ken M. Scr Mater, 2010; 63: 1197
[2]  Suzuki A, Pollock T M. Acta Mater, 2008; 56: 1288
[3]  Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Mater Trans, 2008; 49: 1474
[4]  Xue F, Zhou H J, Ding X F, Wang M L, Feng Q. Mater Lett, 2013; 112: 215
[5]  Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
[6]  Grosdidier T, Hazotte A, Simon A. Scr Metall Mater, 1994; 30: 1257
[7]  Cormier J, Jouiad M, Hamon F, Villechaise P, Milhet X. Philos Mag Lett, 2010; 90: 611
[8]  Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K. Intermetallics, 2013; 32: 274
[9]  Xue F, Li Z Q, Feng Q. Mater Sci Forum, 2010; 654-656: 420
[10]  Li X H, Gan B, Feng Q, Sun Z Q, Chen G L, Zhang G Q, Cao L M. J Univ Sci Technol Beijing, 2008; 30: 1369(李相辉, 甘 斌, 冯 强, 孙祖庆, 陈国良, 张国庆, 曹腊梅. 北京科技大学学报, 2008; 30: 1369)
[11]  Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[12]  Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[13]  Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[14]  Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Scr Mater, 2009; 61: 612
[15]  Jarrett R N, Tien J K. Metall Trans, 1982; 13A: 1021
[16]  Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 1849
[17]  Viatour P, Drapier J M, Coutsouradis D. Cobalt, 1973; 3: 67
[18]  Chen M, Wang C Y. J Appl Phys, 2010; 107: 093705
[19]  Sponseller D L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 259
[20]  Jiang W H, Guan H F, Hu Z Q. J Aeron Mater, 2001; 21(1): 1(姜文辉, 管恒荣, 胡壮麒. 航空材料学报, 2001; 21(1): 1)
[21]  The Editorial Board of China Aeroautical Materials Handbook. China Aeronautical Matrials Handbook. 2nd Ed., Vol.2, Beijing: Standards Press of China, 2002: 531(《中国航空材料手册》编辑委员会. 中国航空材料手册. 第2版, 第2卷, 北京: 中国标准出版社, 2002: 531)
[22]  Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: John Wiley & Sons, 1987: 135
[23]  Blaise J M, Viatour P, Drapier J M. Cobalt, 1970; 49: 192
[24]  Drapier J M, Coutsouradis D. Cobalt, 1968; 39: 63
[25]  Sato J, Omori T, Oikawa K, Ohnuma I, Karinuma R, Ishida K. Science, 2006; 312(5770): 90
[26]  Titus M S, Suzuki A, Pollock T M. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 823
[27]  Titus M S, Suzuki A, Pollock T M. Scr Mater, 2012; 66: 574
[28]  Bauer A, Neumeier S, Pyczak F, Singer R F, G?ken M. Mater Sci Eng, 2012; A550: 333
[29]  Xue F, Wang M L, Feng Q. Mater Sci Forum, 2011; 686: 388
[30]  Xue F, Wang M, Feng Q. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 813

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133