全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*

DOI: 10.3724/SP.J.1037.2013.00816, PP. 886-896

Keywords: 晶体相场模型,应变,晶界预熔化,位错,高温

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用晶体相场模型,分别模拟了小角对称倾侧双晶体系在高温接近熔点温度和达到固-液共存温度时,在外加应变作用下的小角度晶界以及位错的湮没过程.研究表明,没有加外应变时,当体系接近熔点温度情况下,晶界处的晶格位错周围出现预熔化现象,此时预熔化区域内的位错结构并没有发生改变;当温度达到高温固-液共存温度时,预熔化区域明显增大.经高温预熔化后,再施加外应变作用,这时,已存在预熔化的晶界位错发生滑移运动,然后出现位错相遇湮没,晶界消失,同时,伴随的预熔化区域也消失.在预熔化温度情况下的晶界位错的湮没规律基本相同.预熔化温度越接近熔点温度,位错缺陷周围预熔化区域出现晶格原子软化现象越明显,降低了位错周围原子之间的结合强度.这时,在施加外应变作用下,晶格原子对位错滑移运动的阻力降低,位错运动得更快.对于达到高温固-液共存温度情况,此时施加外加应变后,原预熔化区域会出现应变诱发更大面积的预熔化区域.观察到外加应变诱发预熔化区域变化过程中,出现了位错成对地增殖,并发生位错对的旋转和湮没等相互作用;同时,外加应变诱发的预熔化区域的形状随预熔化区内的位错的相互作用而发生变化,出现了预熔化区域相向扩展、连通,然后又分解、分离;尽管这时的预熔化区域形状随外应变作用在不断变化,但此时的预熔化区并不会出现合并消失现象,与较低的预熔化温度的位错运动情况完全不同.

References

[1]  Straumal B B, Zieba P, Gust W. Int J Inorg Mater, 2001; 3: 1113
[2]  Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P. Mater Sci Eng, 2008; A495: 126
[3]  Luo J. Curr Opin Solid State Mater Sci, 2008; 12: 81
[4]  Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G. Science, 2005; 309: 1207
[5]  Tallon J L. Nature, 1978; 276: 849
[6]  Bartis F J. Nature, 1977; 268: 427
[7]  Oxtoby D W. Nature, 1990; 347: 725
[8]  Pusey P N. Science, 2005; 309: 1198
[9]  Hsich T E, Ballaffi R W. Acta Metall, 1989; 37: 1637
[10]  Lu K, Sheng H W, Jin Z H. Chin J Mater Res, 1997; 11: 658 (卢 柯, 生红卫, 金朝晖. 材料研究学报, 1997; 11: 658)
[11]  Chaudron G, Lacombe P, Yannacguis N. C R Acad Sci, 1948; 226: 1372
[12]  Balluffi R W, Maurer R. Scr Metall, 1988; 22: 709
[13]  Hsieh T E, Balluffi R W. Acta Metall, 1989; 37: 1637
[14]  Divinski S, Lohman M, Herzig C, Straumal B, Baretzky B, Gust W. Phys Rev, 2005; 71B: 104104
[15]  Straumal B B, Noskovich Q I, Semenov V N. Acta Metall Mater, 1992; 40: 795
[16]  Wang N, Mokadam S, Rappaz M, Kurz W. Acta Mater, 2004; 52: 3173
[17]  Hirouchi T, Takaki T, Tomita Y. Int J Mech Sci, 2010; 52: 309
[18]  Adland A, Karma A, Spatschek R, Buta D, Asta M. Phys Rev, 2013; 87B: 024110
[19]  Olmsted D L, Buta D, Adland A, Foils S M, Asta M, Karma A. Phys Rev Lett, 2011; 106: 046101
[20]  Spatschek R, Adland A, Karma A. Phys Rev, 2013; 87B: 024109
[21]  Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[22]  Spatschek R, Kouman A. Phys Rev, 2010; 81B: 214201
[23]  Lu Y L, Mu H, Hou H X, Chen Z. Acta Metall Sin, 2013; 49: 358(卢艳丽, 牧 虹, 侯华欣, 陈 铮. 金属学报, 2013; 49: 358)
[24]  Cheng M, Warren J A. J Comput Phys, 2008; 227: 6241
[25]  Gao Y J, Luo Z R, Huang L L, Hu X Y. Acta Metall Sin, 2012; 48:1215(高英俊, 罗志荣, 黄礼琳, 胡项英. 金属学报, 2012; 48: 1215)
[26]  Hirth J P, Pond R C, Lothe J. Acta Mater, 2006; 54: 4237
[27]  Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z. Acta Phys Sin, 2013; 62: 218101(龙 建, 王诏玉, 赵宇龙, 龙清华, 杨 涛, 陈 铮. 物理学报, 2013; 62: 218101)
[28]  Hirth J P, Lothe J. Theory of Dislocation. New York: McGraw-Hill, 1968: 250
[29]  Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon, T G Zhu Y T. Scr Mater, 2011; 64: 327
[30]  Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[31]  Inoko F, Okada T, Maraga T, Nakano Y, Yoshikawa T. Interf Sci, 1997; 4: 263
[32]  Inoko F, Hama T, Tagami M, Yoshikawa T. Ultramicroscopy, 1991; 39: 118
[33]  Zhang L, Wang S Q, Ye H Q. Acta Phys Sin, 2004, 53: 2497(张 林, 王绍青, 叶恒强. 物理学报, 2004; 53: 2497)
[34]  Willians P L, Mishin Y. Acta Mater, 2009; 57: 3786
[35]  Frolov T, Mishin Y. Phys Rev, 2009; 79B: 174110
[36]  Keblinski P, Phillpot S R, Wolf D, Gleiter H. Acta Mater, 1997; 45: 987
[37]  Besold G, Mouritsen O G. Phys Rev, 1994; 50B: 6573
[38]  Qi Y, Krajewski P E. Acta Mater, 2007; 55: 1555
[39]  Wang H L, Wang X X, Liang H Y. Acta Phys Sin, 2005; 54: 4836(王海龙, 王秀喜, 梁海弋. 物理学报, 2005; 54: 4836)
[40]  Lobkovsky A E, Warran J A. Physica, 2002; 164D: 202
[41]  Mishin Y, Boetlinger W J, Warren J A, McFadden G B. Acta Mater, 2009; 57: 3771
[42]  Elder K R, Katakowski M, Haataja M, Grant M. Phys Rev Lett, 2002; 88: 245701
[43]  Elder K R, Grant M. Phys Rev, 2004; 70E: 051605
[44]  Yu Y M, Backofen R, Voigt A. J Cryst Growth, 2011; 318: 18
[45]  Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V, Ala-Nissila T. Phys Rev Lett, 2012; 108: 226102
[46]  Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K. Acta Phys Sin, 2013; 62: 050507(高英俊, 罗志荣, 黄创高, 卢强华, 林 葵. 物理学报, 2013; 62: 050507)
[47]  Greenwood M, Rottler J, Provatas N. Phys Rev, 2011; 83E: 031601
[48]  Mkhonta S K, Elder K R, Huang Z F. Phys Rev Lett, 2013; 111: 035501
[49]  Gao Y J, Luo Z R, Huang L L, Lin K. Chin J Nonferrous Met, 2013; 23: 1892(高英俊, 罗志荣, 黄礼琳, 林 葵. 中国有色金属学报, 2013; 23:1892)
[50]  Yang T, Chen Z, Dong W P. Acta Metall Sin, 2011; 47: 1301(杨 涛, 陈 铮, 董卫平. 金属学报, 2011; 47: 1301)
[51]  Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G. Acta Metall Sin, 2014; 50: 110(高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 金属学报, 2014; 50: 110)
[52]  Gao Y J, Wang J F, Luo Z R, Lu Q H, Liu Y. Chin J Comput Phys, 2013; 30: 577(高英俊, 王江帆, 罗志荣, 卢强华, 刘 瑶.计算物理, 2013; 30: 577)
[53]  Mellenthin J, Karma A, Phapp M. Phys Rev, 2008; 78B: 184110
[54]  Hirouchi T, Takaki T, Tomita Y. Comput Mater Sci, 2009; 44: 1192

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133