全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

基于软化机制的TC18钛合金本构关系研究*

DOI: 10.3724/SP.J.1037.2013.00801, PP. 871-878

Keywords: TC18钛合金,动态软化机制,本构关系,高温变形

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过TC18钛合金热模拟压缩实验,得到不同变形条件下的高温变形真应力-真应变曲线.通过加工硬化和动态软化效应,分析变形参数变化对TC18钛合金应力-应变曲线形态和峰值应力的影响.不同变形条件下,TC18钛合金流变曲线呈现出相似的特征,而峰值应力对变形参数的变化却十分敏感.通过Poliak-Jonas准则,分析了不同条件下TC18钛合金在高温变形过程中的软化机制.相同温度下,动态再结晶机制主要发生在低应变速率下的高温变形过程中,并且软化机制的选择对温度不敏感.基于传统的Arrhenius型方程,针对TC18钛合金热变形过程中不同的软化机制,分别建立动态再结晶和动态回复机制下的本构方程.针对识别出的TC18合金在不同变形条件下的软化机制,通过适用的本构模型来描述TC18合金在应变为0.7时真实应力对变形温度、应变速率的响应过程.以动态再结晶为主要软化机制的变形过程,其变形激活能和应变速率敏感系数远远大于以动态回复为主的过程.

References

[1]  Moiseyer V N. Titanium Alloys-Russian Aircraft and Aerospace Applications. London: Taylor & Francis Group, 2005: 46
[2]  Semiatin S L, Seetharaman V, Weiss I. Mater Sci Eng, 1999; A263: 257
[3]  Bruschi S, Poggio S, Quadrini F. Mater Lett, 2004; 58: 3622
[4]  Sumantra M, Rakesh V, Sivaprasad P V. Mater Sci Eng, 2007; A500: 114
[5]  Cui J H, Yang H, Sun Z C. Rare Metall Mater Eng, 2012; 41: 0397
[6]  Li X L. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 2005(李晓丽. 西北工业大学博士学位论文, 西安, 2005)
[7]  Sha W, Savko M. Titanium Alloys: Modelling of Microstructure, Properties and Applications. Cambridge: Woodhead Publishing, 2009: 265
[8]  Jia B, Peng Y. Acta Metall Sin, 2011; 47: 507(贾 斌, 彭 艳. 金属学报, 2011; 47: 507)
[9]  Zhang W F, Li X L, Sha W, Yan W, Wang W, Shan Y Y, Yang K. Mater Sci Eng, 2014; A590: 199
[10]  Roberts W, Ahlblom B. Acta Metall, 1978; 26: 801
[11]  Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Elsevier, 2004: 431
[12]  Wang B, Guo H Z, Yao Z K. Forg Stamp Technol, 2006; (6): 106(王 斌, 郭鸿镇, 姚泽坤. 锻压技术, 2006; (6): 106)
[13]  Miura H, Sakai T, Mogawa R, Gottstein G. Scr Mater, 2004; 51: 671
[14]  Chen X R, Li H X, Ge M Q, Chen Y H, Hu Y S. Acta Metall Sin, 1997; 33: 1275(程晓茹, 李虎兴, 葛懋琦, 陈贻宏, 胡衍生. 金属学报, 1997; 33: 1275)
[15]  Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Scr Mater, 2014; 72-73: 1
[16]  Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731
[17]  Gottstein G, Kocks U F. Acta Meter, 1983; 31: 175
[18]  Mahoney M W. Materials Properties Handbook: Titanium Alloys. Materials Park: ASM International, 1994: 154
[19]  Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals. Boca Raton: CRC Press, 2010: 211
[20]  Mao P L, Yang K, Su G Y. Acta Metall Sin, 2001; 37: 40(毛萍莉, 杨 柯, 苏国跃. 金属学报, 2001; 37: 40)
[21]  Sellars C M, Whiteman J A. Acta Meter, 1979; 13: 187
[22]  Sargent P M, Ashby M F. Scr Mater, 1982; 16: 1415
[23]  Ouyang D L, Lu S Q, Cui X. J Aero Mater, 2010; 30(2): 17(欧阳德来, 鲁世强, 崔 霞. 航空材料学报, 2010; 30(2): 17)
[24]  Fernández A I, Uranga P, López B, Rodriguez-Ibabe J M. Mater Sci Eng, 2003; A361: 367
[25]  Taylor A S, Hodgson P D. Mater Sci Eng, 2011; A528: 3310
[26]  McQueen H J, Sue Y, Ryan N D, Fry E J. Mater Process Technol, 1995; 53: 293
[27]  Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133