全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

交流电场增强45钢中低温粉末法渗硼特性

DOI: 10.11900/0412.1961.2014.00102, PP. 1311-1318

Keywords: 粉末法渗硼,交流电场,中低温,扩散

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过在粉末法渗硼过程中施加交流电场,对45钢进行中低温粉末法渗硼,研究交流电场增强中低温粉末法渗硼特性.结果表明,位于交流电场平行电极间不同位置处试样渗硼效果一致.施加适当的交流电场,可显著增加中低温(450~800℃)下的渗硼速度,硼化物层厚度与渗硼温度呈线性关系.交流电场增强渗硼渗层的形貌与常规渗硼的相似,呈锯齿状垂直楔入基体,其厚度与渗硼时间关系曲线呈抛物线型.采用交流电场易于获得单一Fe2B相渗层.在800℃渗硼时,交流电场增强渗硼的硼化物层厚度随电场电流增加而增加.交流电场的促渗作用是电场强化试样内的扩散、渗剂中的反应与扩散及提高渗罐内的实际温度等的综合结果.

References

[1]  Xie F, Sun L, Pan J W. Surf Coat Technol, 2012; 206: 2839
[2]  Angkurarach L, Juijerm P. Arch Metall Mater, 2012; 57: 799
[3]  Xie F, Zhu Q H, Lu J J. Solid State Phenom, 2006; 118: 167
[4]  Usta M, Ozbek I, Bindal C, Ucisik A H, Ingole S, Liang H. Vacuum, 2006; 80: 1321
[5]  Oliveira C K N, Casteletti L C, Lombardi Neto A, Totten G E, Hech S C. Vacuum, 2010; 84: 792
[6]  Sinha A K. Boriding (Boronizing) of Steels. Materials Park: ASM International, 1991: 437
[7]  Yu L G, Chen X J, Khor K A, Sundararajan G. Acta Mater, 2005; 53: 2361
[8]  Ipek M, Celebi Efe G, Ozbek I, Zeythin S, Bindal C. J Mater Eng Perform, 2012; 21: 733
[9]  Miyashita F, Yokota K. Surf Coat Technol, 1996; 84: 334
[10]  Huang Z R, Li P N, Xie F, Pan J W. Rare Earth, 2000; 18: 205
[11]  Lu X X, Liang C, Gao X X, An J, Yang X H. ISIJ Int, 2011; 51: 799
[12]  Anthymidis K G, Stergiousdis E, Tsipas D N. Mater Res Bull, 2001; 51: 156
[13]  Anthymidis K G, Stergiousdis G, Tsipas D N. Sci Technol Adv Mater, 2002; 3:303
[14]  Bartsch K, Leonhardt A. Surf Coat Technol, 1999; 116-119: 386
[15]  Gunes I, Ulker S, Taktak S. Mater Des, 2011; 32: 2380
[16]  Xie F, Zhou Z H, Wang D L. Acta Metall Sin, 2008; 44: 810 (谢 飞, 周正华, 王大亮. 金属学报, 2008; 44: 810)
[17]  Xie F, Hu J, Zhou Z H, Hu H B, Li H J, Pan J W. Surf Eng, 2011; 27: 134
[18]  Xie F, Pan J W. IHTSE, 2012; 6(2): 80
[19]  Xie F, Sun L, Cheng J. Surf Eng, 2013; 29: 240
[20]  Chen F S, Wang K L. Surf Coat Technol, 1999; 115: 239
[21]  Wu B S, Xie Z J, He L. Trans Mater Heat Treat, 1985; 6(2): 20 (吴宝善, 谢泽嘉, 何 力. 金属热处理学报, 1985; 6(2): 20)
[22]  Wang G Z, Wang W Z. Thermo-Chemical Treatment for Steels. Beijing: China Railway Press, 1980: 293 (王国佐, 王万智. 钢的化学热处理. 北京: 中国铁道出版社, 1980: 293)
[23]  Wuhan Research Institute of Materials Protection, Shanghai Research Institute of Materials. Metallographic Maps of Thermo-Chemically Treated Irons and Steels. Beijing: Mechanical Industry Press, 1980: 52 (武汉材料保护研究所, 上海材料研究所. 钢铁化学热处理金相图谱. 北京: 机械工业出版社, 1980: 52)
[24]  КИЛИК И Н, translated by Li W Q. Characteristics of Steels' Induction Heat Treatment. Beijing: Industry Press of China, 1962: 3 (КИЛИК И Н 著, 李文卿译. 钢的感应加热热处理工艺特点. 北京: 中国工业出版社, 1962: 3)
[25]  Asoka-Kumar P, O'Brien K, Lynn K G, Simpson P J, Rodbell K P. Appl Phys Lett, 1996; 68: 406
[26]  Kondo T, Yasuhara M, Kuramoto T, Kodera Y, Ohyanagi M, Munir Z A. J Mater Sci, 2008; 43: 6400
[27]  Zhou Y, Wang Q, Sun D L, Han X L. J Alloys Compd, 2011; 509: 1201
[28]  Xie F, Cheng J. In: Chinese Heat Treatment Society ed., Proc 20th IFHTSE, Beijing: Chinese Heat Treatment Society, 2012: 293
[29]  Cheng J, Xie F, Sun L, Pan J W. Sci Sin Technol, 2014; 44: 315

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133