全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

Fe-Bi-Mn三元合金多相相变-扩散体系中易切削相析出规律的数值研究

DOI: 10.11900/0412.1961.2014.00200, PP. 1393-1402

Keywords: Fe-Bi-Mn三元合金,凝固,多相相变,多相扩散路径,数值研究

Full-Text   Cite this paper   Add to My Lib

Abstract:

以扩散支配相变动力学方法为基础,建立了多相三维流动凝固模型.模型考虑了固、液、气三相扩散相变对Fe-Bi-Mn三元合金凝固的影响,模拟研究了合金体系中Bi和MnS易切削相的析出过程,并分析了易切削相的多相相变过程和多相扩散路径.结果表明易切削相的析出过程受多相相变-扩散作用影响,Mls,MnS(MnS的固-液质量相变速率)较大,MnS的分配系数大而扩散系数小,当C*s,MnS(MnS的固相界面浓度)大于Cl,MnS(MnS的液相浓度)时,液相MnS在固-液界面处浓度降低,最终被固相完全“捕获”,导致MnS不再富集;Mls,Bi(Bi的固-液质量相变速率)较小且Mgl,Bi(Bi的液-气质量相变速率)为负值,Bi的分配系数小而扩散系数大,凝固过程中存在气相Bi且Cl,Bi(Bi的液相浓度)始终大于C*s,Bi(Bi的固相界面浓度),故Bi持续流动富集于MnS周围,直至凝固结束.研究工作将模拟结果与实验结果进行了对比,两者吻合较好.

References

[1]  Xu D, Bai Y, Fu H, Guo J. Int J Heat Mass Transfer, 2005; 48: 2219
[2]  Wu M, K?n?zsy L, Ludwig A, Schutzenhofer W, Tanzer R. Steel Res Int, 2008; 79: 637
[3]  Zalo?nik M, Combeau H. Int J Therm Sci, 2010; 49: 1500
[4]  Zhao G W, Li X Z, Xu D M, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2011; 47: 1135 (赵光伟, 李新中, 徐达鸣, 傅恒志, 杜 勇, 贺跃辉. 金属学报, 2011; 47: 1135)
[5]  Peng D J, Lin X, Zhang Y P, Guo X, Wang M, Huang W D. Acta Metall Sin, 2013; 49: 365 (彭东剑, 林 鑫, 张云鹏, 郭 雄, 王 猛, 黄卫东. 金属学报, 2013; 49: 365)
[6]  Galenko P K, Danilov D A. J Cryst Growth, 1999; 197: 992
[7]  Guttmann M. Metall Mater Trans, 1977; 8A: 1383
[8]  Temmel C, Ingesten N G, Karlsson B. Metall Mater Trans, 2006; 37A: 2995
[9]  Kang Y B. Calphad, 2010; 34: 232
[10]  Rangel R H, Bian X. Numer Heat Transfer, 1995; 28A: 589
[11]  Rangel R H, Bian X. Int J Heat Mass Transfer, 1996; 39: 1591
[12]  Bian X, Rangel R H. Int J Heat Mass Transfer, 1998; 41: 244
[13]  American Society for Metals. ASM Metals Handbook. Michigan: ASM International, 1987: 83
[14]  Brandes E A, Brook G B. Smithell's Light Metals Handbook. Massachusetts: Elsevier Science and Technology, 1998: 36
[15]  Ayyar A, Chawla N. Compos Sci Technol, 2006; 66: 1980
[16]  Krishtal M A, Borgardt A A, Yashin Y D. Met Sci Heat Treat, 1977; 19: 178
[17]  Lou D, Cui K, Jia Y. J Mater Eng Perform, 1997; 6: 215
[18]  Akasawa T, Sakurai H, Nakamura M, Tanaka T, Takano K. J Mater Process Technol, 2003; 143: 66
[19]  Iwamoto T, Murakami T. Jfe Tech Rep, 2004; 4: 64
[20]  Wu D, Li Z. J Iron Steel Res Int, 2010; 17: 59
[21]  Li Y, Suzuki T, Tang N, Koizumi Y, Chiba A. Mater Sci Eng, 2013; A583: 161
[22]  Bhattacharya D. Metall Mater Trans, 1981; 12A: 973
[23]  Yaguchi H. Mater Sci Tech-Lond, 1989; 5: 255
[24]  Xu J L, Song B, Chen J K, Han Q Y, Jiang G C. Acta Metall Sin, 1993; 29: 65 (徐建伦, 宋 波, 陈继开, 韩其勇, 蒋国昌. 金属学报, 1993; 29: 65)
[25]  Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z. Acta Phys Sin, 2014; 63: 076101 (王 哲, 王发展, 王 欣, 何银花, 马 姗, 吴 振. 物理学报, 2014; 63: 076101)
[26]  Li J, Wu M, Hao J, Ludwig A. Comp Mater Sci, 2012; 55: 407
[27]  Ueshima Y, Sawada Y, Mizoguchi S, Kajioka H. Metall Mater Trans, 1989; 20A: 1375
[28]  Yamamoto K, Shibata H, Mizoguchi S. ISIJ Int, 2006; 46: 82
[29]  Schneider M C, Beckermann C. Int J Heat Mass Transfer, 1995; 38: 3455
[30]  Dupont J N. Metall Mater Trans, 2006; 37A: 1937
[31]  Wang T M, Li T J, Cao Z Q, Jin J Z, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. Acta Metall Sin, 2006; 42: 591 (王同敏, 李廷举, 曹志强, 金俊泽, Grimmig T, Bührig-Polaczek A, Wu M, Ludwig A. 金属学报, 2006; 42: 591)
[32]  Beckermann C, Viskanta R. Appl Mech Rev, 1993; 46: 1
[33]  Ludwig A, Wu M. Metall Mater Trans, 2002; 33A: 3673
[34]  Ahmad N, Rappaz J, Desbiolles J L, Jalanti T, Rappaz M, Combeau H. Metall Mater Trans, 1998; 29A: 617
[35]  Wu M, Ludwig A, Bührig-Polaczek A, Fehlbier M, Sahm P R. Int J Heat Mass Transfer, 2003; 46: 2819
[36]  Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publication, 1998: 280

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133