全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

应力松弛方法研究2种HR3C耐热钢的高温蠕变行为

DOI: 10.11900/0412.1961.2014.00225, PP. 1343-1349

Keywords: HR3C耐热钢,应力松弛,蠕变

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用应力松弛方法研究了2种不同晶粒大小HR3C耐热钢的初始态试样和时效态试样的高温蠕变变形行为,并分析了其微观组织特点.结果表明,尽管2种HR3C耐热钢的化学成分相近,但其蠕变行为有明显差异.相同条件下,晶粒较粗的HR3C耐热钢初始态与时效态的蠕变速率均低于晶粒较细的HR3C耐热钢,具有较高的蠕变抗力.2种HR3C耐热钢经过高温时效处理后,蠕变抗力均明显降低.晶粒较细小的HR3C钢在高温时效后其应力指数(n)与蠕变表观激活能(Q)的降低幅度更加显著,表明晶粒较细的HR3C耐热钢的蠕变抗力的稳定性低于晶粒较粗的HR3C耐热钢.

References

[1]  Sha J J, Park J S, Hinoki T, Kohyama A. Mech Mater, 2007; 39: 175
[2]  Zhao J. Statistical Analysis and Reliability Prediction on the Creep Rupture Life of Heat Resistant Steel. Beijing: Science Press, 2011: 8 (赵 杰. 耐热钢持久性能的统计分析及可靠性预测. 北京: 科学出版社, 2011: 8)
[3]  Dotsenko V I. Phys Stat Sol, 1979; 93B: 13
[4]  Woodford D A. JSME Int J, 2002; 45A: 98
[5]  Ek C G, Hagstr?m B, Kuba?t J, Rigdahl M. Rheol Acta, 1986; 25: 534
[6]  Woodford D A, Wereszczak A A, Bakker W T. J Eng Gas Turbines Power, 2000; 122: 206
[7]  Holm A, Konstantin N. Int J Modern Phys, 2008; 22B: 5413
[8]  Chandler H D. Mater Sci Eng, 2010; A527: 6219
[9]  Beddoes J. J Strain Anal Eng Des, 2011; 46: 416
[10]  Zhan L H, Yang L. J Plastic Eng, 2013; 20: 126 (湛利化, 阳 凌. 塑性工程学报, 2013; 20: 126)
[11]  Guo J Q, Xuan F Z, Wang Z D, Tu S D. Proc Chin Soc Electr Eng, 2009; 29: 92 (郭进全, 轩福贞, 王正东, 涂善东. 中国电机工程学报, 2009; 29: 92)
[12]  Raghavender R G, Gupta O P, Pradhan B. Int J Pressure Vessels Piping, 2011; 88: 65
[13]  Li T J, Liu F G, Fan C X, Yao B Y. Hot Work Technol, 2010; 39(14): 43 (李太江, 刘福广, 范长信, 姚兵印. 热加工工艺, 2010; 39(14): 43)
[14]  Liu J W, Luo C P, Xiao X L, Chen H X. Acta Metall Sin, 2002; 38: 127 (刘江文, 罗承萍, 肖晓玲, 陈和兴. 金属学报, 2002; 38: 127)
[15]  Iseda A, Okada H, Semba H, Igarashi M. Energy Mater, 2007; 2: 199
[16]  Guo J Q, Xuan F Z, Wang Z D, Tu S D. Nucl Power Eng, 2009; 30(4): 9 (郭进全, 轩福贞, 王正东, 涂善东. 核动力工程, 2009; 30(4): 9)
[17]  Zhu Z, Zhang L W, Gu S D. Chin J Nonferrous Met, 2012; 22: 1063 (朱 智, 张立文, 顾森东. 中国有色金属学报, 2012; 22: 1063)
[18]  Fang Y Y, Zhao J, Li X N. Acta Metall Sin, 2010; 46: 844 (方园园, 赵 杰, 李晓娜. 金属学报, 2010; 46: 844)
[19]  Fang Y Y. Master Thesis, Dalian University of Technology, 2010 (方园园. 大连理工大学硕士学位论文, 2010)
[20]  Tan J, Li C, Sun C, Ying S H, Lian S S, Kan X W, Feng K Q. Acta Metall Sin, 2009; 45: 173 (谭 军, 李 聪, 孙 超, 应诗浩, 连姗姗, 阚细武, 冯可芹. 金属学报, 2009; 45: 173)
[21]  Yan W Z, Gao H S, Yue Z F. Rare Met Mater Eng, 2013; 42: 1250 (闫五柱, 高行山, 岳珠峰. 稀有金属材料与工程, 2013; 42: 1250)
[22]  Zhang J S. High Temperauture Deformation and Fracture of Materials. Beijing: Science Press, 2007: 56 (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 56)
[23]  Rothman S J, Nowicki L J, Murch G E. J Phys, 1980; 10F: 383
[24]  Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735
[25]  Kong Q P, Dai Y. Mater Sci Prog, 1988; 2: 1 (孔庆平, 戴 勇. 材料科学进展, 1988; 2: 1)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133