全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2014 

氧化膜结构及内应力对新锆合金腐蚀机理的影响

DOI: 10.11900/0412.1961.2014.00261, PP. 1529-1537

Keywords: 锆合金,氧化膜,内应力,晶体结构,腐蚀机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用XRD和Raman光谱技术对NZ2锆合金在360℃,18.6MPa含锂水和400℃,10.3MPa蒸汽中腐蚀不同时间后氧化膜的内应力及晶体结构进行测试,通过SEM对氧化膜的显微结构进行表征.结果表明,随着腐蚀时间的延长,NZ2合金氧化膜中四方相含量不断降低,单斜相含量不断升高,发生四方相向单斜相转变.当氧化膜厚度达到2mm时,出现了立方相.氧化膜中四方相含量越高,锆合金的耐腐蚀性能越好.氧化膜内应力及显微结构的研究结果表明,NZ2合金氧化膜内有高的压应力存在.氧化开始阶段,随着腐蚀过程的进行,氧化膜内部压应力增加.当氧化膜厚度达到2mm时,氧化膜中压应力超过临界值,氧化膜发生破裂,应力释放发生.裂纹降低了氧化膜的保护性,腐蚀转折发生.转折后氧化膜内压应力很低,而且基本保持恒定.因此,腐蚀转折与氧化膜内压应力的突然释放密切相关.氧化膜中压应力越高,四方相越稳定,耐腐蚀性能越好.同时,探索了氧化膜中四方相和立方相的稳定机理,建立了新锆合金的腐蚀机理模型.

References

[1]  Baek J H, Jeong Y H, Kim I S. J Nucl Mater, 2000; 28: 235
[2]  Yilmazbayhan A, Motta A T, Comstock R J, Sabol G P, Lai B, Cai Z H. J Nucl Mater, 2004; 324: 6
[3]  Maixner J, Krysa J, Matějka P, Vrtilková V. Mater Sci Forum, 2000; 321-324: 737
[4]  Godlewski J, Gros J P, Lambertin M, Wadier J F, Weidinger H. Zirconium in the Nuclear Industry: Ninth International Symposium, Kobe: ASTM International, 1991: 416
[5]  Takeda K, Anada H. Zirconium in the Nuclear Industry: Twelfth International Symposium, Toroton: ASTM International, 2000: 592
[6]  Krysa J, Maixner J, Matějka P, Vrtílková V. Mater Chem Phys, 2000; 63: 1
[7]  Arima T, Miyata K, Inagaki Y, Idemitsu K. Corros Sci, 2005; 47: 435
[8]  Zhiyaev A P, Szpunar J A. J Nucl Mater, 1999; 264: 327
[9]  Pétigny N, Barberis P, Lemaignan C, Valot C, Lallemant M. J Nucl Mater, 2000; 280: 318
[10]  Oskarsson M, Ahlberg E, Andersson U, Pettersson K. J Nucl Mater, 2001; 297: 77
[11]  Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2001; 30: 81 (刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2001; 30: 81)
[12]  Godlewski J, Bouvier P, Fayette L. Zirconium in the Nuclear Industry: Twelfth International Symposium, West Conshohoeken, PA: ASTM International, 2000: 877
[13]  Hong H S, Kim S J, Lee K S. J Nucl Mater, 1999; 273: 177
[14]  Liu W Q, Li Q, Zhou B X. Rare Met Mater Sci Eng, 2004; 33: 1112 (刘文庆, 李 强, 周邦新. 稀有金属材料与工程, 2004; 33: 1112)
[15]  Shao S Y. Laser Opt Prog, 2005; 42(1): 22 (邵淑英. 激光与光电子学进展, 2005; 42(1): 22)
[16]  Anada H, Takeda K. Zirconium in the Nuclear Industry: Eleventh International Symposium, West Conshohoeken, PA: ASTM International, 1996: 35
[17]  Weidinger H G, Ruhmann H, Cheliotis G, Maguire M, Yau T L. Zirconium in the Nuelear Industly: Ninth International Symposium, Kobe: ASTM International, 1991: 499
[18]  Bechade J L, Goudeau P, Gailhanou M, Yvon O. High Temp Mater Proc, 1998; 2: 359
[19]  Gosmain L, Valot C, Ciosmak D, Sicardy O. Solid State Ionics, 2001; 141-142: 633
[20]  Wang D N, Guo Y Q, Liang K M, Tao K. Science in China, 1998; 28A: 823 (王大宁, 郭永权, 梁开明, 陶 琨. 中国科学, 1998; 28A: 823 )
[21]  Garvie R C, Nicholson P S. J Am Ceram Soc, 1972; 55: 303
[22]  Steinberg E, Weidinger H G, Schaa A. Zirconium in the Nuclear Industry: Sixth International Symposium, Vancouver: ASTM International, 1984: 106
[23]  Barberis P, Merle-Méjean T, Quintard P. J Nucl Mater, 1997; 246: 232
[24]  Zhang H X, Li Z K, Xu B S, Wang Y Z, Zhou L. J Funct Mater, 2014; 85: 02001 (章海霞, 李中奎, 许并社, 王永祯, 周 廉. 功能材料, 2014; 85: 02001)
[25]  Stapper G, Bernasconi M, Nicoloso N, Parrinello M. Phys Rev, 1999; 59B: 797

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133