全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*

DOI: 10.11900/0412.1961.2014.00525, PP. 873-882

Keywords: Kirkendall空洞,金属间化合物,生长动力学,组织演化,晶体相场法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用二元合金晶体相场模型模拟研究了Sn/Cu互连体系Cu/Cu3Sn界面及金属间化合物层中Kirkendall空洞形成和形貌演化及长大过程,对Kirkendall空洞生长的微观机制进行了剖析,同时还模拟和分析了界面Cu3Sn层厚度和杂质含量对Kirkendall空洞形貌和生长动力学的影响.研究表明,Kirkendall空洞的生长过程由4个阶段组成Cu/Cu3Sn界面形成大量原子错配区,原子错配区迅速成长为空洞,空洞的长大及随后的空洞合并生长.Kirkendall空洞优先在Cu/Cu3Sn界面处形核,其尺寸随时效时间的延长而增大,并在时效后期空洞的生长伴随有空洞的合并.Cu3Sn层厚度增加和杂质含量增多均使得Kirkendall空洞数量和生长指数增加以及尺寸增大,并且2种情况下空洞数量随时间的变化均呈现先增后减的规律.

References

[1]  Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[2]  Ke C B, Zhou M B, Zhang X P. Acta Metall Sin, 2014; 50: 294 (柯常波, 周敏波, 张新平. 金属学报, 2014; 50: 294)
[3]  Zhou M B, Ma X, Zhang X P. Acta Metall Sin, 2013; 49: 341 (周敏波, 马 骁, 张新平. 金属学报, 2013: 49: 341)
[4]  Frear D R. JOM, 1996; 48: 49
[5]  Shang J K, Yao D. J Electron Packag, 1996; 118: 170
[6]  Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[7]  Liang S B,Ke C B,Ma W J,Zhou M B,Zhang X P. In: Bi K Y ed., Proceedings of the 15th International Conference on Electronic Packaging Technology, Piscataway, NJ: IEEE Press, 2014: 641
[8]  Besser P R, Madden M C, Flinn P A. J Appl Phys, 1992; 72: 3792
[9]  Ahat S, Sheng M, Luo L. J Electron Mater, 2001; 30: 1317
[10]  Lin X Q, Luo L. J Electron Mater, 2008; 37: 307
[11]  Zeng K J, Stierman R, Chiu T C, Edwards D. J Appl Phys, 2005; 97: 024508-1
[12]  Wang Y W, Lin Y W, Kao C R. J Alloys Compd, 2010; 493: 233
[13]  Liu Y, Wang J, Yin L, Kondos P, Parks C, Borgesen P, Henderson D W, Cotts E J, Dimitrov N. J Appl Electrochem, 2008; 38: 1695
[14]  Wafula F, Liu Y, Yin L, Bliznakov S, Borgesen P. J Electrochem Soc, 2010; 157: 111
[15]  Wafula F, Liu Y, Yin L, Borgesen P. J Appl Electrochem, 2011; 41: 469
[16]  Yin L, Borgesen P. J Mater Res, 2011; 26: 455
[17]  Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. Z Kristallogr, 2005; 220: 567
[18]  Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[19]  Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[20]  Vanderbilt D. Phys Rev, 1990; 41B: 7892
[21]  Elder K R, Provatas N, Berry J, Stefanovic P, Grant M. Phys Rev, 2007; 75B: 064107-1
[22]  Elder K R, Huang Z F, Provatas N. Phys Rev, 2010; 81E: 011602-1
[23]  Elder K R, Thornton K, Hoyt J J. Philos Mag, 2011; 91: 151
[24]  Berry J, Elder K R, Grant M. Phys Rev, 2008; 77B: 224114
[25]  Mellenthin J, Karma A, Plapp M. Phys Rev, 2008; 78B: 184110
[26]  Liu C Y, Ke L, Chuang Y C, Wang S J. J Appl Phys, 2006; 100: 083702
[27]  Lee C H, Park C O. Jpn J Appl Phys, 2003; 42: 4484
[28]  Kim J Y, Yu J. Appl Phys Lett, 2008; 92: 092109-1
[29]  Weinberg K, B?hme T, Müller W H. Comput Mater Sci, 2009; 45: 827
[30]  Yu J, Kim J Y. Acta Mater, 2008; 56: 5514
[31]  Kim B J,Lim G T,Kim J,Lee K,Park Y B,Joo Y C. In: Wipiejewski T ed., Proceedings of the 58th Electronic Components and Technology Conference, Piscataway, NJ: IEEE Press, 2008: 336
[32]  Christian J W. The Theory of Transformations in Metals and Alloys. London: Pergamon Press Oxford, 1965: 471

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133