全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

760℃长期时效对一种Ni-Cr-W-Fe合金组织和力学性能的影响*

DOI: 10.11900/0412.1961.2014.00592, PP. 807-814

Keywords: Ni-Cr-W-Fe合金,长期时效,g',,拉伸性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用OM,SEM和TEM研究了一种Ni-Cr-W-Fe合金在760℃长期时效过程中的显微组织变化,测试了合金室温和高温力学性能,对拉伸断口进行了分析.结果表明,1100℃固溶后合金平均晶粒尺寸约为80mm,晶内包含退火孪晶.760℃时效后合金中析出M23C6和g'相.g'相尺寸约为29nm,体积分数约为19%.760℃长期时效后,g'颗粒平均尺寸与时间t满足Ostwald方程.固溶态合金具有优异的室温塑性,拉伸断口具有韧性断裂形貌.时效态合金室温屈服强度明显增加,塑性下降.随760℃保温时间延长,合金室温和高温屈服强度缓慢降低.与时效态合金相比,1000~3000h时效后的合金室温塑性降低,高温塑性维持在15%左右,与时效态基本相当.

References

[1]  Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221 (郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[2]  Patel S J, de Barbadillo J J, Baker B A, Gollihue R D. Procedia Eng, 2013; 55: 246
[3]  Lin F, Chen S, Xie X. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 46
[4]  Tokairin T, Dahl K V, Danielsen H K, Grumsen H B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[5]  Wang T T, Wang C S, Guo J T, Zhou L Z. Mater Sci Forum, 2013; 747-748: 647
[6]  Viswanathan R, Sarver J, Tanzosh J M. J Mater Eng Perform, 2006; 15: 256
[7]  Wu Q, Hyojin S, Swinderman R W, Shingledecker J P, Vasudevan V K. Metall Mater Trans, 2008; 39A: 2569
[8]  Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[9]  Sims C T, Hagel W C. The Superalloys. New York: John Wiley & Sons, 1972: 55
[10]  MacKay R A, Nathal M V. Acta Metall Mater, 1990; 38: 993
[11]  Kim H T, Chun S S, Yao X X. J Mater Sci, 1997; 32: 4917
[12]  Ardell A J. Acta Metall, 1968; 16: 511
[13]  Lifscitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[14]  Footer P K, Richards B P. J Mater Sci, 1982; 17: 2141
[15]  Wagner C. Z Elektrochem, 1961; 65: 581
[16]  Li X, Saunders N, Miodownik A P. Metall Mater Trans, 2002; 33A: 3367
[17]  Patil R V, Kale G B. J Nucl Mater, 1996: 230: 57
[18]  Baldan A. J Mater Sci, 2002; 37: 2379
[19]  Kong Y H, Chen Q Z. Mater Sci Eng, 2004; A366: 135
[20]  Huang Q Y,Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 29 (黄乾尧,李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 29)
[21]  Lin F S, Xie X S, Zhao S Q, Dong J X. J Chin Soc Power Eng, 2011; 31: 960 (林富生, 谢锡善, 赵双群, 董建新. 动力工程学报, 2011; 31: 960)
[22]  Viswanathan R, Purgert R, Goodstine R S, Tanzosh J, Stanko G, Shingledecker J P, Vitalis B. In: Viswanathan R, Gandy D, Coleman K eds., Proc 5th Int Conf on Advances in Materials Technology for Fossil Power Plants, Marco Island, Florida: EPRI, 2007: 1
[23]  Nakamura S, Kawashima H, Takei Y, Saito N, Tanaka Y, Nishimoto S. Mitsubishi Heavy Ind Tech Rev, 2011; 48(3): 8
[24]  Viswanathan V, Purgert R, Rawls P. Adv Mater Proc, 2008; 8: 47
[25]  Knezevic V, Schneider A, Landier C. Procedia Eng, 2013; 55: 240
[26]  Van Stone R W. In: Strang A ed., Proc of Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plant, London: IOM Communications Ltd., 2000: 91
[27]  Allen D, Keustermans J P, Grijbels S, Bicego V. Mater High Temp, 2004; 21: 53

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133