全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

超细晶粒钢中晶粒尺寸对塑性的影响模型*

DOI: 10.11900/0412.1961.2014.00678, PP. 777-783

Keywords: 塑性,超细晶粒,晶粒尺寸,位错塞积,位错源

Full-Text   Cite this paper   Add to My Lib

Abstract:

以作者前期提出的位错塞积模型为基础,结合断裂强度与晶粒尺寸的关系,建立了晶粒细化导致超细晶粒钢总伸长率降低的临界晶粒尺寸的计算模型.以晶粒尺寸从10mm减小到0.2mm为例,计算结果表明,钢的总塑性伸长率随着晶粒尺寸的减小首先呈现增加的趋势,但是当晶粒尺寸减小到大约2.5mm后,随着晶粒尺寸的减小,钢的总伸长率不仅不再增加,反而出现了显著的降低,这一结果较好地吻合了近期超细晶粒材料研究的实验现象.本工作的研究说明,导致超细晶粒钢伸长率降低的主要机制在于当晶粒细化到一定程度后,晶界对位错源开动的阻力增大,由此导致的可动位错数目显著降低使得应变量显著减少.

References

[1]  Kim Y M, Kim S K, Lim Y J, Kim N J. ISIJ Int, 2002; 42: 1571
[2]  Zhao M C, Shan Y Y, Xiao F R, Yang K, Li Y H. Mater Lett, 2002; 57: 141
[3]  Okatsu M, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 8
[4]  Ishikawa N, Shikanai N, Kondo J. JFE Tech Rep, 2008; 12: 15
[5]  Park K T, KimY S, Lee J G, Shin D H. Mater Sci Eng, 2000; A293: 165
[6]  Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[7]  Kumar B R, Sharma S, Kashyap B P, Prabhu N. Mater Des, 2015; 68: 63
[8]  Song R, Ponge D, Raabe D. Scr Mater, 2005; 52: 1075
[9]  Lee T, Koyama M, Tsuzaki K, Lee Y H, Lee C S. Mater Lett, 2012; 75: 169
[10]  Lee T, Park C H, Lee D, Lee C S. Mater Sci Eng, 2011; A528: 6558
[11]  Hu T, Ma K, Topping T D, Saller B, Yousefiani A, Schoenung J M, Lavernia E J. Scr Mater, 2014; 78-79: 25
[12]  Song R, Ponge D, Raabe D, Speer J G, Matlock D K. Mater Sci Eng, 2006; A441: 1
[13]  Xue P, Xiao B L, Ma Z Y. Mater Sci Eng, 2012; A532: 106
[14]  Zhuang Z, Cui Y N, Gao Y, Liu Z L. Adv Mech, 2011; 41: 647 (庄 茁, 崔一南, 高 原, 柳占立. 力学进展, 2011; 41: 647)
[15]  Rao S I, Dimiduk D M, Parthasarathy T A, Uchic M D, Tang M, Woodward C. Acta Mater, 2008; 56: 3245
[16]  Liu J, Zhu G H, Mao W M, Subramanian S V. Mater Sci Eng, 2014; A607: 302
[17]  Stroh A N. Adv Phys, 1957; 6: 418
[18]  Smith E. Acta Metall, 1966; 14: 985
[19]  McMahon C J, Cohen M. Acta Metall, 1965; 13: 591
[20]  Knott J F. Fundamentals of Fracture Mechanics. New York: John Wiley-Halsted Press, 1973: 98
[21]  Lin T, Evans A G, Ritchie R O. Metall Trans, 1987; 18A: 641
[22]  Curry D A, King J E. Met Sci, 1978; 12: 247
[23]  Yu Y N,Yang P,Qiang W J,Chen L. Fundament of Materials Science. Beijing: Higher Education Press, 2006: 537 (余永宁,杨 平,强文江,陈 冷. 材料科学基础. 北京: 高等教育出版社, 2006: 537)
[24]  Wu S J, Davis C L. Mater Sci Eng, 2004; A387-389: 456
[25]  Sato S, Wagatsuma K, Suzuki S, Kumagai M, Imafuku M, Tashiro H, Kajiwara K, Shobu T. Mater Charact, 2013; 83: 152
[26]  Veistinen M K, Lindroos V K. Scr Metall, 1984; 18: 185
[27]  Deng W, Gao X M, Qin X M, Zhao D W, Du L X, Wang G D. Acta Metall Sin, 2010; 46: 533 (邓 伟, 高秀梅, 秦小梅, 赵德文, 杜林秀, 王国栋. 金属学报, 2010; 46: 533)
[28]  Yang P. Electron Back Scattering Diffraction Technique and its Application. Beijing: Metallurgical Industry Press, 2007: 157 (杨 平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 157)
[29]  Zhu G, Mao W, Yu Y. Scr Mater, 2000; 42: 37
[30]  Mao W M, Chen L, Yu Y N. Chin Sci Bull, 2002; 47: 1540 (毛卫民, 陈 冷, 余永宁. 科学通报, 2002; 47: 1540)
[31]  Chin G Y. Metall Trans, 1972; 3: 2213
[32]  Franciosi P. Acta Metall, 1983; 31: 1331
[33]  Eshelby J D, Frank F C, Nabarro F R N. Philos Mag, 1951; 742: 351
[34]  Gao H L. Pipeline Steel and Pipeline Pipe. Beijing: China Petrochemical Press, 2012: 8 (高惠临. 管线钢与管线钢管. 北京: 中国石化出版社, 2012: 8)
[35]  Ohashi T, Kawamukai M, Zbib H. Int J Plast, 2007; 23: 897
[36]  Cheng C, Jie M, Chan L, Chow C L. Int J Mech Sci, 2009; 49: 217
[37]  Zhao M, Yin F, Hanamura T, Nagai K, Atrens A. Scr Mater, 2007; 57: 857
[38]  Hanamura T, Yin F, Nagai K. ISIJ Int, 2004; 44: 610
[39]  Park K T, Han S Y, ShinD H, LeeY K, Lee K J, Lee K S. ISIJ Int, 2004; 44: 1057
[40]  Song R, Pong D, Raabe D. Acta Mater, 2005; 53: 4881
[41]  Dini G, Najafizadeh A, Ueji R, Monir-Vaghefi S M. Mater Lett, 2010; 64: 15
[42]  Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133