全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响

DOI: 10.11900/0412.1961.2015.00363, PP. 1261-1272

Keywords: 单晶高温合金,Hf,成分分配比,显微组织,持久性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对4种不同Hf含量(0~0.80%,质量分数,下同)的第二代镍基单晶高温合金DD11铸态及热处理态组织定量表征与1100℃,140MPa持久性能测试,研究了Hf对相转变温度、(γ+γ’)共晶组织、碳化物、微孔、凝固偏析、合金元素成分分配比及持久性能的影响.结果表明,添加Hf显著降低合金的固/液相线,降低微孔含量,提高铸态共晶组织体积分数、MC型碳化物含量以及凝固偏析程度.合金热处理后,随着Hf含量提高,固溶微孔含量显著降低、残余共晶和碳化物含量显著增加.添加Hf通过提高Re,Mo和Cr的成分分配比,增加γ/γ’错配度,减小γ/γ’界面位错间距,促进Re,Mo和Cr向γ相中偏聚,提高固溶强化效果,减小微孔含量等方式,显著提高DD11合金持久性能.但当Hf含量达到0.80%时,热处理后的残余共晶、碳化物含量较高,导致合金持久性能明显降低.

References

[1]  Pollock T M, Tin S. J Propul Power, 2006; 22: 361
[2]  Newell M, Devendra K, Jennings P A, D'Souza N. Mater Sci Eng, 2005; A412: 307
[3]  Siegel D J, Hamilton J. Acta Mater, 2005; 53: 87
[4]  Harris K, Wahl J B. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 45
[5]  Chen Q Z, Jones C N, Knowles D M. Mater Sci Eng, 2004; A385: 402
[6]  Shah D M, Cetel A. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 295
[7]  Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[8]  Duhl D, Sullivan C. J Met, 1971; 23: 38
[9]  Hou J S, Guo J T, Wu Y X, Zhou L Z, Ye H Q. Mater Sci Eng, 2010; A527: 1548
[10]  Zheng Y R, Cai Y L, Ruan Z C, Ma S W. J Aeronaut Mater, 2006; 26: 25 (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26: 25)
[11]  Chen Q Z, Jones N, Knowles D M. Acta Mater, 2002; 50: 1095
[12]  Wang L, Wang D, Liu T, Li X W, Jiang W G, Zhang G, Lou L H. Mater Charact, 2015; 104: 81
[13]  Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2004; A385: 105
[14]  Sellamuthu R, Brody H, Giamei A. Metall Trans, 1986; 17B: 347
[15]  Baldan A. J Mater Sci, 1990; 25: 4341
[16]  Ren H L. Technology of Metallographic Experiment. Beijing: Metallurgy Industry Press, 2006: 159 (任怀亮.金相实验技术. 北京: 冶金工业出版社, 2006: 159)
[17]  Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[18]  Zhang J X, Murakumo T, Harada H, Koizumi Y. Scr Mater, 2003; 48: 287
[19]  Gungor M N. Metall Trans, 1989; 20A: 2529
[20]  Lecomte-Beckers J. Metall Trans, 1988; 19A: 2341
[21]  Anton D L, Giamei A F. Mater Sci Eng, 1985; 76: 173
[22]  Chen Q Z, Kong Y H, Jones C N, Knowles D M. Scr Mater, 2004; 51: 155
[23]  Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Mater Lett, 2004; 58: 2290
[24]  Fuchs G E. J Mater Eng Perform, 2002; 11: 19
[25]  Shi Q Y, Li X H, Zheng Y R, Xie G, Zhang J, Feng Q. Acta Metall Sin, 2012; 48: 1237 (石倩颖, 李相辉, 郑运荣, 谢 光, 张 健, 冯 强. 金属学报, 2012; 48: 1237)
[26]  Reed R C. The Superalloys: Fundamentals and Applications. Cambridge,UK: Cambridge University Press, 2006: 53
[27]  Kong Y H. PhD Dissertation, The University of Hong Kong, 2005
[28]  Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2014; A626: 406
[29]  Chen J Y, Feng Q, Cao L M, Sun Z Q. Mater Sci Eng, 2011; A528: 3791
[30]  Neumeier S, Pyczak F, Goken M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[31]  Rowland L J, Feng Q, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 697
[32]  Kablov E N, Petrushin N V. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 901
[33]  Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[34]  Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 737
[35]  Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[36]  Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 35
[37]  Chen J Y, Zhao B, Feng Q, Cao L M. In: Joseph R, Omer D, Donna B eds., TMS 2009 Annual Meeting and Exhibition, San Francisco: Minerals, Metals & Materials Soc, 2009: 233
[38]  Heckl A, Neumeier S, G?ken M, Singer R. Mater Sci Eng, 2011; A528: 3435
[39]  Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[40]  Fleischmann E, Miller M K, Affeldt E, Glatzel U. Acta Mater, 2015; 87: 350
[41]  Mottura A, Warnken N, Miller M K, Finnis M W, Reed R C. Acta Mater, 2010; 58: 931
[42]  Hu P P, Chen J Y, Feng Q, Chen Y H, Cao L M, Li X H. Chin J Nonferrous Met, 2011; 21: 332 (胡聘聘, 陈晶阳, 冯 强, 陈艳辉, 曹腊梅, 李相辉. 中国有色金属学报, 2011; 21: 332)
[43]  Hopgood A A, Martin J W. Mater Sci Eng, 1986; 82: 27
[44]  Fritzemeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 265
[45]  Wilson B C, Hickman J A, Fuchs G E. J Met, 2003; 55: 35
[46]  Kong Y H, Chen Q Z, Knowles D M. J Mater Sci, 2004; 39: 6993

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133