全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2015 

一种高性能航空涡轮盘用铸锻合金的研究进展

DOI: 10.11900/0412.1961.2015.00442, PP. 1191-1206

Keywords: 铸锻高温合金,TMW合金,合金设计,组织控制,变形机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对航空涡轮盘用先进铸锻变形高温合金热加工难、承温能力低于680℃(630MPa,1000h持久寿命)、难以满足现代航空发动机设计需求等不足,提出了优化析出强化相成分和引入微孪晶以提高合金中温区(合金服役温区)强度、同时减弱析出相高温强化效果和固溶温度以降低合金高温区(合金加工温区)强度的理念,设计并制备出系列Ni-Co基铸锻高温合金(TMW合金).设计合金盘坯(直径440mm,厚65mm)的制备和性能测试表明,TMW合金可在常规熔铸和锻造设备上热加工制备,承温能力超过700℃,比目前最强的商用铸锻涡轮盘合金U720Li提高了50℃以上.从TMW合金的设计思想、成分特点、锻造加工性、组织控制、性能特征和变形强化机理等方面,简要介绍了这种高性能铸锻变形高温合金的主要研究进展.

References

[1]  Aoki K, Wang X M, Memezawa A, Masumoto T. Mater Sci Eng, 1994; A179: 390
[2]  Cui C Y, Gu Y F, Ping D H, Harada H. Intermetallics, 2008; 16: 910
[3]  Guo J T. Materials Science and Engineering for Superalloy. Vol.2, Beijing: Science Press, 2010: 663 (郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2010: 663)
[4]  Cui C Y, Gu Y F, Harada H, Ping D H, Sato A. Metall Mater Trans, 2006; 37A: 3183
[5]  Cui C Y, Gu Y F, Ping D H, Harada H, Fukuda T. Mater Sci Eng, 2008; A485: 651
[6]  Cui C Y, Gu Y F, Ping D H, Harada H. Metall Mater Trans, 2009; 40A: 282
[7]  Ping D H, Cui C Y, Gu Y F, Harada H. Ultramicroscopy, 2007; 107: 791
[8]  Cui C Y, Gu Y F, Ping D H, Fukuda T, Harada H. Mater Trans, 2008; 49: 424
[9]  Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H. Mater Sci Eng, 2012; A552: 464
[10]  Zhong Z H, Gu Y F, Yuan Y, Cui C Y, Yokokawa T, Harada H. J Mater Sci, 2011; 46: 7573
[11]  Osada T, Nagashima N, Gu Y F, Yuan Y, Yokokawa T, Harada H. Scr Mater, 2011; 64: 892
[12]  Osada T, Gu Y F, Nagashima N, Yuan Y, Yokokawa T, Harada H. Acta Mater, 2013; 61: 1820
[13]  Guo J T. Materials Science and Engineering for Superalloy. Vol.3, Beijing: Science Press, 2010: 650 (郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2010: 650)
[14]  Jiang H F. Gas Turbine Experiment Res, 2002; 15(4): 1 (江和甫. 燃气涡轮试验与研究, 2002; 15(4): 1)
[15]  Reed R C. The Superalloys Fundaments and Application. Cambridge: Cambridge University Press, 2006: 259
[16]  Gu Y F, Cui C Y, Harada H, Fukuda T, Ping D H, Mitsuhashi A, Kato K, Kobayashi T, Fujioka J. In: Reed R C, Green A K, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A eds., Superalloy 2008, Pittsburgh: TMS, 2008: 53
[17]  Cao W D. In: Green K A, Pollock T M, Harada H Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Pittsburgh: TMS, 2004: 91
[18]  Reed R C, Jackson M, Na Y S. Metall Mater Trans, 1999; 30A: 521
[19]  Gabb T P, Telesman J, Kantzos P T, O'Connor K. Characterization of the Temperature Capabilities of Advanced Disk Alloy ME3. Washington: National Aeronautics and Space Administration,NASA/TM-2002-211796, 2002
[20]  Gu Y F, Fukuda T, Cui C Y, Harada H, Mitsuhashi A, Yokokawa T, Fujioka J, Koizumi Y, Kobayashi T. Metall Mater Trans, 2009; 40A: 3047
[21]  Yokokawa T, Gu Y F, Cui C Y, Koizumi Y, Fujioka J, Harada H, Fukuda T, Mitsuhashi A. JIM, 2010; 74: 221
[22]  Gu Y F, Harada H, Cui C Y, Ping D H, Sato A, Fujioka J. Scr Mater, 2006; 55: 815
[23]  Cui C Y, Gu Y F, Harada H, Sato A. Metall Mater Trans, 2005; 36A: 2921
[24]  Guard R, Westbrook J. Trans Am Inst Mining Metall Eng, 1959; 215: 807
[25]  Takasugi T, Takazawa M, Izumi O. J Mater Sci, 1990; 25: 4239
[26]  Suzuki T, Oya Y, Ochiai S. Metall Trans, 1984; 15: 173
[27]  Xu L, Cui C Y, Sun X F. Mater Sci Eng, 2011; A528: 7851
[28]  Yuan Y, Gu Y F, Cui C Y, Osada T, Zhong Z H, Tetsui T, Yokokawa T, Harada H. J Mater Res, 2011; 26: 2833
[29]  Yuan Y, Gu Y F, Cui C Y, Osada T, Yokokawa T, Harada H. Adv Eng Mater, 2011; 13: 296
[30]  Fukuda T, Mitsuhashi A, Kato K, Gu Y F, Harada H. J Gas Turbine Soc Jpn, 2007; 35(3): 132
[31]  Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[32]  Osada T, Gu Y F, Yokokawa T, Harada H. JIM, 2010; 74: 279
[33]  Osada T, Gu Y F, Yuan Y, Yokokawa T, Harada H. JIM, 2010; 74: 688
[34]  Zhong Z H, Gu Y F, Yuan Y, Osada T, Cui C Y, Yokokawa T, Tetsui T, Harada H. Metall Mater Trans, 2012; 43A: 1017
[35]  Yuan Y, Gu Y F, Zhong Z H, Osada T, Yokokawa T, Harada H. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Telesman J eds., Superalloy 2012, Pittsburgh: TMS, 2012: 35
[36]  Yuan Y, Gu Y F, Zhong Z H, Osada T, Yokokawa T, Harada H. Scr Mater, 2012; 67: 137
[37]  Cui C Y, Gu Y F, Yuan Y, Harada H. Scr Mater, 2011; 64: 502
[38]  Cui C Y, Jin T, Sun X F. J Mater Sci, 2011; 46: 5546
[39]  Tian C G, Cui C Y, Xu L, Gu Y F, Sun X F. J Mater Sci Technol, 2013; 29: 873
[40]  Cai Y L, Tian C G, Fu S H, Han G M, Cui C Y, Zhang Q C. Mater Sci Eng, 2015; A638: 314
[41]  Xu Y J, Qi D Q, Du K, Cui C Y, Ye H Q. Scr Mater, 2014; 87: 37
[42]  Gu Y F, Cui C Y, Ping D H, Harada H, Fukuda T, Fujioka J. Mater Sci Eng, 2009; A510-511: 250
[43]  Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H. Mater Sci Eng, 2011; A528: 5106
[44]  Yuan Y, Gu Y F, Zhong Z H, Osada T, Cui C Y, Tetsui T, Yokokawa T, Harada H. J Microscopy, 2012; 248: 34
[45]  Tian C G, Han G M, Cui C Y, Sun X F. Mater Des, 2014; 64: 316
[46]  Tian C G, Cui C Y, Sun X F. Metall Mater Trans, 2015; 46A: 4601
[47]  Xu L, Chu Z K, Cui C Y, Gu Y F, Sun X F. Acta Metall Sin, 2013;49: 863 (徐 玲, 储昭贶, 崔传勇, 谷月峰, 孙晓峰. 金属学报, 2013; 49: 863)
[48]  Zhang Z J, Zhang P, Li L L, Zhang Z F. Acta Mater, 2012; 60: 3113
[49]  Zhong Z H, Gu Y F, Yuan Y, Yokokawa T, Harada H. Mater Sci Eng, 2012; A552: 434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133