全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

计算机辅助蛋白质分子理性设计:从肌红蛋白到一氧化氮还原酶

, PP. 784-789

Keywords: 肌红蛋白,一氧化氮还原酶,金属结合位点,分子设计,分子模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

计算机辅助蛋白质分子理性设计在解决化学及生物学重要问题中被证实十分有效。在NOR本身三维结构未知的情况下通过计算机分子模拟,使用肌红蛋白(Mb)作为蛋白质分子模型,设计了结构功能型一氧化氮还原酶(NOR),所设计的NOR蛋白质模型——FeBMb一年后被天然NOR的晶体结构所证实。本文综述了设计FeBMb,I107EFeBMb以及FeBMb(-His)的研究过程及其设计合理性,评述了通过使用计算机分子模拟,获得Mb处于双组氨酸配位的非天然状态的原子层次结构信息,而这些信息很难通过实验方法来获得。计算机辅助蛋白质分子理性设计的广泛应用将会为生物体系提供更深刻的内涵。

References

[1]  Samish I, MacDermaid C M, Perez-Aguilar J M, Saven J G. Annu. Rev. Phys. Chem., 2011, 62: 129—149
[2]  Lutz S. Curr. Opin. Biotechnol., 2010, 21: 734—743
[3]  Mandell D J, Kortemme T. Nat. Chem. Biol., 2009, 5: 797—807
[4]  Damborsky J, Brezovsky J. Curr. Opin. Chem. Biol., 2009, 13: 26—34
[5]  Kang S G, Saven J G. Curr. Opin. Chem. Biol., 2007, 11: 329—334
[6]  Jiang L, Althoff E A, Clemente F R, Doyle L, Rthlisberger D, Zanghellini A, Gallaher J L, Betker J L, Tanaka F, Barbas C F Ⅲ, Hilvert D, Houk K N, Stoddard B L, Baker D. Science, 2008, 319: 1387—1391
[7]  Yeung N, Lin Y W, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Nature, 2009, 462: 1097—1082
[8]  Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101: 3047—3080
[9]  Ueno T, Abe S, Yokoi N, Watanabe Y. Coord. Chem. Rev., 2007, 251: 2717—2731
[10]  Abe S, Ueno T, Watanabe Y. Top Organomet. Chem., 2009, 25: 25—43
[11]  林英武(Lin Y W), 黄仲贤(Huang Z X). 世界科技研究与发展(World Science-Technology R&D), 2006, 28(1): 8—13
[12]  Lin Y W, Wu Y M, Liao L F. J. Mol. Model., 2012, 18: 1591—1596
[13]  Urayama P, Phillips G N Jr, Gruner S M. Structure, 2002, 10: 51—60
[14]  Sigman J A, Kwok B C, Lu Y. J. Am. Chem. Soc., 2000, 122: 8192—8196
[15]  Pereira M M, Sousa F L, Verissimo A F, Veríssimo A F, Teixeira M. Biochim. Biophys. Acta, 2008, 1777: 929—934
[16]  Reimann J, Flock U, Lepp H, Honiqmann A, Adelroth P. Biochim. Biophys. Acta, 2007, 1767: 362—373
[17]  Zhao X, Yeung N, Russell B S, Garner D K, Lu Y. J. Am. Chem. Soc., 2006, 128: 6766—6767
[18]  Pinakoulaki E, Varotsis C. J. Inorg. Biochem., 2008, 102: 1277—1287
[19]  Leitgeb S, Nidetzky B. Biochem. Soc. Trans., 2008, 36: 1180—1186
[20]  Sievert S M, Scott K M, Klotz M G, Chain P S, Hauser L J, Hemp J, Hügler M, Land M, Lapidus A, Larimer F W, Lucas S, Malfatti S A, Meyer F, Paulsen I T, Ren Q, Simon J, The USF Genomics Class. Appl. Environ. Microbiol., 2008, 74: 1145—1156
[21]  Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. ChemBioChem, 2005, 6: 1356—1359
[22]  Wang Z H, Lin Y W, Rosell F I, Ni F Y, Lu H J, Yang P Y, Tan X S, Li X Y, Huang Z X, Mauk A G. ChemBioChem, 2007, 8: 607—609
[23]  Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855—862
[24]  Saven J G. Curr. Opin. Chem. Biol., 2011, 15: 452—457
[25]  Nanda V, Koder R L. Nat. Chem., 2010, 2: 15—24
[26]  Saven J G. Curr. Opin. Colloid Interface Sci., 2010, 15: 13—17
[27]  Lippow S M, Tidor B. Curr. Opin. Biotechnol., 2007, 18: 305—311
[28]  Regan L, DeGrado W F. Science, 1988, 241: 976—978
[29]  Hecht M H, Richardson J S, Richardson D C, Ogden R C. Science, 1990, 249: 884—891
[30]  Robertson D E, Farid R S, Moser C C, Urbauer J L, Mulholland S E, Pidikiti R, Lear J D, Wand A J, DeGrado W F, Dutton P L. Nature, 1994, 368: 425—432
[31]  Kaplan J, DeGrado W F. Proc. Natl. Acad. Sci. USA, 2004, 101: 11566—11570
[32]  Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y. Science, 2010, 330: 1666—1670
[33]  Lu Y. Curr. Opin. Chem. Biol., 2005, 9: 118—126
[34]  Lu Y. Angew. Chem. Int. Ed., 2006, 45: 5588—5601
[35]  Lu Y. Inorg. Chem., 2006, 45: 9930—9940
[36]  Lu Y, Garner D K, Zhang J L. Wiley Encyclopedia of Chemical Biology, 2008, 1—10
[37]  Watanabe Y. Curr. Opin. Chem. Biol., 2002, 6: 208—216
[38]  Watanabe Y, Nakajima H, Ueno T. Acc. Chem. Res., 2007, 40: 554—562
[39]  Matsuo T, Fukumoto K, Watanabe T, Hayashi T. Chem. Asian J., 2011, 6: 2491—2499
[40]  Shoji O, Watanabe Y. Metallomics, 2011, 3: 379—388
[41]  Oohora K, Onoda A, Kitagishi H, Harada A, Hayashi T. Chem. Sci., 2011, 2: 1033—1038
[42]  林英武(Lin Y W), 黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794—800
[43]  林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203—1211
[44]  Cohen J, Arkhipov A, Braun R, Schulten K. Biophys. J., 2006, 91: 1844—1857
[45]  Sigman J A, Kim H K, Zhao X, Carey J R, Lu Y. Proc. Natl. Acad. Sci. USA, 2003, 100: 3629—3634
[46]  Watmough N J, Field S J, Hughes R J L, Richardson D J. Biochem. Soc. Trans., 2009, 37: 392—399
[47]  Butland G, Spiro S, Watmough N J, Richardson D J. J. Bacteriol., 2001, 183: 189—199
[48]  Blomberg L M, Blomberg M R, Siegbahn P E. Biochim. Biophys. Acta, 2006, 1757: 240—252
[49]  Lin Y W, Yeung N, Gao Y G, Zhao X, Russell B S, Lei L, Miner K D, Robinson H, Lu Y. Proc. Natl. Acad. Sci. USA, 2010, 107: 8581—8586
[50]  Hayashi T, Miner K D, Yeung N, Lin Y W, Lu Y, Mo nne-Loccoz P. Biochemistry, 2011, 50: 5939—5947
[51]  Yeung N, Lu Y. Chem. Biodiversity, 2008, 5: 1437—1454
[52]  Kovaleva E G, Lipscomb J D. Nat. Chem. Biol., 2008, 4: 186—193
[53]  Lin Y W, Yeung N, Gao Y G, Miner K D, Tian S, Robinson H, Lu Y. J. Am. Chem. Soc., 2010, 132: 9970—9972
[54]  Lin Y W. Proteins, 2011, 79: 769—684
[55]  Wang W H, Wang Y H, Lu J X, Wang J H, Xie Y, Huang Z X. Chem. Lett., 2002, 674—675
[56]  Ying T, Zhong F, Wang Z H, Li W, Tan X, Huang Z X. ChemBioChem, 2011, 12: 707—710
[57]  Lin Y W, Nie C M, Liao L F. J. Mol. Model, 2012, in press

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133