全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

气相自由基反应动力学的光电离质谱研究

, PP. 2097-2105

Keywords: 同步辐射光电离质谱,激光光解,气相自由基反应,宏观动力学过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

气相自由基能与各种气体发生快速反应,在大气化学、燃烧化学和星际化学等重要的化学过程中起着关键性的催化作用。许多实验方法(例如荧光法和吸收法)已经用于研究气相自由基反应动力学过程,并取得许多重要的成果,但这些技术局限于探测小分子自由基反应。流动管反应器和闪光光解结合光电离质谱的实验技术以其通用性、多重探测性、选择性和灵敏性等多种优势,成为研究气相自由基反应的主要实验方法。本文介绍利用高通量、高分辨、连续可调的同步辐射光电离质谱开展多种自由基反应研究所取得的一些独创性的成果。另外,该技术具有独有的时间分辨、能量分辨和异构体分辨的能力,能够广泛用于大气化学、燃烧化学和星际化学中一些重要的气相自由基(如烷氧自由基、烃类自由基等)反应宏观动力学过程的研究。

References

[1]  丁国安(Ding G Z), 郑向东(Zheng X D), 马建中(Ma J Z), 刘煜(Liu Y), 颜鹏(Yan P).应用气象学报(Journal of Applied Meteorological Science), 2006, 17(6): 796-814
[2]  Chyba C, Sagan C. Nature, 1992, 355: 125-132
[3]  Miller S L. Science, 1953, 117: 528-529
[4]  Stahl F, Schleyer P V, Bettinger H F, Kaiser R I, Lee Y T, Schaefer H F. J. Chem. Phys., 2001, 114: 3476-3487
[5]  Kaiser R I. The role of cyano (CN) and ethynyl (C2H) radicals in astrobiology and implications to the origin of life on earth (Eds. Ehrenfreund P, Angerer O, Battrick B). Frascati: Esa. Sp. Publ., 2001, 496: 145-153
[6]  Carter W P L. Atmos. Environ. A General Topics, 1990, 24: 481-518
[7]  Kaiser R I. Chem. Rev., 2002, 102: 1309-1358
[8]  Tian Y W, Sun S H, Xie J P, Zong Y L, Nie C, Guo Y L. Chin. J. Chem., 2007, 25 (8): 1139 - 1144
[9]  孔繁敖(Kong F A), 董锋(Dong F). 化学物理学报(Chinese Journal of Chemical Physics), 2004, 17: 225-232
[10]  Balucani N, Asvany O, Kaiser R I, Osamura Y. J. Phys. Chem. A, 2002, 106: 4301-4311
[11]  Slagle I R, Gutman D. J. Am. Chem. Soc., 1985, 107: 5342-5347
[12]  Wang B S, Fockenberg C. J. Phys. Chem. A, 2001, 105: 8449-8455
[13]  Trevitt A J, Goulay F, Meloni G, Osborn D L, Taatjes C A, Leone S R. Int. J. Mass Spect., 2009, 280: 113-118
[14]  Osborn D L, Meloni G, Zou P, Klippenstein S J, Ahmed M, Leone S R, Taatjes C A. J. Am. Chem. Soc., 2006, 128: 13559-13567
[15]  Meloni G, Selby T M, Goulay F, Leone S R, Osborn D L, Taatjes C A. J. Am. Chem. Soc., 2007, 129: 14019-14025
[16]  Meloni G, Selby T M, Osborn D L, Taatjes C A. J. Phys. Chem. A, 2008, 112: 13444-13451
[17]  Selby T M, Meloni G, Goulay F, Leone S R, Fahr A, Taatjes C A, Osborn D L. J. Phys. Chem. A, 2008, 112: 9366-9373
[18]  Goulay F, Trevitt A J, Meloni G, Selby T M, Osborn D L, Taatjes C A, Vereecken L, Leone S R. J. Am. Chem. Soc., 2009, 131: 993-1005
[19]  Bada J J, Lazcano A. Science, 2003, 300: 745-746
[20]  Wennberg P O, Hanisco T F, Jaegle L, Jacob D J, Hintsa E J, Lanzendorf E J, Anderson J G, Gao R S, Keim E R, Donnelly S G, Del N L A, Fahey D W, McKeen S A, Salawitch R J, Webster C R, May R D, Herman R L, Proffitt M H, Margitan J J, Atlas E L, Schauffler S M, Flocke F, McElroy C T, Bui T P. Science, 1998, 279 (5347): 49-53
[21]  戴东旭(Dai D X), 杨学明(Yang X M). 化学进展(Progress in Chemistry), 2007, 19: 1633-1645
[22]  黄存顺(Huang C X), 李宗孝(Li Z X), 赵东锋(Zhao D F), 新瑶(Xin Y), 裴林森(Pei L S), 陈从香(Chen C X), 陈旸(Chen Y). 科学通报(Chinese Science Bulletin), 2004, 49 (2): 120-124
[23]  Wei W M, Tan W, Zheng R H, He T J, Chen D M, Liu F C. Chem. Phys., 2005, 312: 241-259
[24]  Xie H B, Shao C B, Ding Y H. Astrophys. J., 2007, 670 (1): 449-456
[25]  Britton D, Davidson N, Gehman W, Schott G. J. Chem. Phys., 1956, 25: 804-810
[26]  Palmer H B, Hornig D F. J. Chem. Phys., 1957, 26: 98-106
[27]  詹明生(Zhan M S), 周士康(Zhou S K), 邱元武(Qiu Y W), 刘颂豪(Liu S H), 史济良(Shi J L), 李方琳(Li F L), 姚介兴(Yao J X). 化学学报(Acta Chim. Sinica), 1986, 44 (11): 1149-1151
[28]  Hu R Z, Zhang Q, Chen Y. J. Chem. Phys., 2010, 132: art. no. 164312
[29]  Gannon K L, Glowacki D R, Blitz M A, Hughes K J, Pilling M J, Seakins P W. J. Phy. Chem. A, 2007, 111: 6679-6692
[30]  Choi N, Blitz M A, McKee K, Pilling M J, Seakins P W. Chem. Phys. Lett., 2004, 384: 68-72
[31]  Fockenberg C, Bernstein H J, Hall G E, Muckerman J T, Preses J M, Sears T J, Weston R E. Rev. Sci. Instrum., 1999, 70: 3259-3264
[32]  Blitz M A, Goddard A, Ingham T, Phlling M J. Rev. Sci. Instrum., 2007, 78: 034103-034111
[33]  Zhou S H, Chu G B, Cao L L, Shan X B, Liu F Y, Han J G, Sheng L S. Eur. J. Mass Spectrom., 2011, 17(4): 385-394
[34]  Slagle I R, Yamada F, Gutman D. J. Am. Chem. Soc., 1981, 103: 149-153
[35]  Wang B S, Hou H, Yoder L M, Muckerman J T, Fockenberg C. J. Phys. Chem. A, 2003, 107: 11414-11426
[36]  Osborn D L, Zou P, Johnsen H, Hayden C C, Taatjes C A, Knyazev V D, North S W, Peterka D S, Ahmed M, Leone S R. Rev. Sci. Instrum., 2008, 79: 104103-104112
[37]  Taatjes C A, Hansen N, Osborn D L, Hoinghaus K K, Cool T A, Westmoreland P R. Phys. Chem. Chem. Phys., 2008, 10: 20-34
[38]  Welz O, Savee J D, Osborn D L, Vasu S S, Percival C J, Shallcross D E, Taatjes C A. Science, 2012, 335: 204-207
[39]  Trevitt A J, Goulay F, Taatjes C A, Osborn D L, Leone S R. J. Phys. Chem. A, 2010, 114: 1749-1755
[40]  North S W, Greenwald E E, Ghosh B, Anderson K C, Dooley K S, Zou P, Selby T, Osborn D L, Meloni G, Taatjes C A, Goulay F. J. Phys. Chem. A, 2010, 114: 904-912
[41]  Leone S R, Goulay F, Osborn D L, Taatjes C A, Zou P, Meloni G. Phys. Chem. Chem. Phys., 2007, 9: 4291-4300
[42]  Soorkia S, Trevitt A J, Selby T M, Osborn D L, Taatjes C A, Wilson K R, Leone S R. J. Phys. Chem. A, 2010, 114: 3340-3354
[43]  Soorkia S, Liu C L, Savee J D, Ferrell S J, Leone S R, Wilson R. Rev. Sci. Instrum., 2011, 82: 124102-124109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133