全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

不同形貌纳米FeNi合金的制备

, PP. 2312-2319

Keywords: 纳米,FeNi,形貌,制备

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米FeNi合金因其独特的电磁及催化性能在磁记录、催化剂、吸波材料及生物医学等领域存在广阔的应用前景。由于材料的形貌对其性能有着重要的影响,本文重点介绍了不同形貌(球形、一维形貌、纳米点阵、纳米环、纳米片、纳米花、树枝状及无特定形貌)纳米FeNi合金的制备方法,叙述了各方法制备纳米FeNi合金的基本原理及调控规律,并对各方法的优缺点作出了简要评价。同时,对材料形貌与尺寸对其性能影响的机理及规律作出了简要说明,阐述了其形貌及结构特征对材料性质的影响,指出了不同形貌纳米FeNi合金的优势应用领域。最后,对该领域未来的研究方向作出了展望。

References

[1]  Hickey M C, Atkinson D, Marrows C H, Hickey B J. J. Appl. Phys., 2008, 103: art. no. 07D518
[2]  Chou S Y, Krauss P R, Kong L. J. Appl. Phys., 1996, 79: art. no. 6101
[3]  Park K Y, Han J H, Lee S B, Yi J W. Compos. A Appl. Sci. Manuf., 2011, 42: 573-578
[4]  Yang H, Li X J, Zhou H, Zhuang Y M, Hu H, Wu H X, Yang S P. J. Alloys Compd., 2011, 509: 1217-1221
[5]  Dai M F, Hsiao J K, Lee S C, Chen S T. The Chinese Journal of Process Engineering, 2006, 6: 249-252
[6]  Wohlfarth E P. Ferromagnetic Materials, vol. 2. Amsterdam: North-Holland Publishing Co., 1980. 123
[7]  朱俊武(Zhu J W), 张维光( Zhang W G), 王恒志(Wang H Z), 杨绪杰(Yang X J), 陆路德(Lu L D), 汪信(Wang X). 无机化学学报(Chin. J. Inorg. Chem. ), 2004, 20: 863-867
[8]  Gleiter H. Acta Mater., 2000, 48: 1-29
[9]  Hao E, Bailey R C, Schatz G C, Hupp J T, Li S. Nano Lett., 2004, 4: 327-330
[10]  He Y, Shi G G. J. Phys. Chem. B, 2005, 109: 17503-17511
[11]  Gurmena S, Ebina B, Stopi Dc' S, Friedrich B. J. Alloys Compd., 2009, 480: 529-533
[12]  Chau J L H. Mater. Lett., 2007, 61: 2753-2756
[13]  Duhamel C, Champion Y, Tencé M, Walls M. J. Alloys Compd., 2005, 393: 204-210
[14]  Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110: 14262-14265
[15]  Lu X G, Liang G Y, Zhang Y M. Mater. Sci. Eng. B, 2007, 139: 124-127
[16]  Chen Y Z, She H D, Luo X H, Yue G H, Mi W B, Bai H L, Peng D L. J. Nanosci. Nanotechnol., 2010, 10: 3053-3059
[17]  McNerny K L, Kim Y, Laughlin D E, McHenry M E. J. Appl. Phys., 2010, 107: art. no. 09A312
[18]  Larin V S, Torcunov A V, Zhukov A, Gonzalez J, Vazquez M, Panina L. J. Magn. Magn. Mater., 2002, 249: 39-45
[19]  Xue T, Wang X, Lee J M. J. Power Sources, 2012, 201: 382-386
[20]  Kovtyukhova N I, Mallouk T E. Nanoscale, 2011, 3: 1541-1552
[21]  Cortes A, Lavin R, Denardin J C, Marotti R E, Dalchiele E A, Valdivia P, Gomez H. J. Nanosci. Nanotechnol., 2011, 11: 3899-3910
[22]  Rousse C, Fricoteaux P. J. Mater. Sci., 2011, 46: 6046-6053
[23]  Wang X L. J. Mater. Sci., 2012, 47: 739-745
[24]  Kashi M A, Ramazani A, Akhshi N, Esmaeily A S. Jpn. J. Appl. Phys., 2012, 51: art. no. 025003
[25]  Fathi R, Sanjabi S, Bayat N. Mater. Lett., 2012, 66: 346-348
[26]  O’Shea K J, McVitie S, Chapman J N, Weaver J M R. Appl. Phys. Letts., 2008, 93: art. no. 202505
[27]  Aravamudhan S, Singleton J, Goddard P A, Bhansali S. J. Phys. D: Appl. Phys., 2009, 42: art. no. 115008
[28]  Ross C A, Haratani S, Castano F J, Hao Y, Hwang M, Shima M, Cheng J Y, Vogeli B, Farhoud M, Walsh M, Smith H I. J. Appl. Phys., 2002, 91: 6848-6853
[29]  Tanaka M, Itoh K, Iwamoto H, Yamaguchi A, Miyajima H, Yamaoka T. J. Magn. Magn. Mater., 2007, 310: e792-e793
[30]  Liu W, Zhong W, Qiu L, Lu L Y, Du Y W. Eur. Phys. J. B, 2006, 51: 501-506
[31]  Weekes S M, Ogrin F Y, Murray W A, Keatley P S. Langmuir, 2007, 23: 1057-1060
[32]  Tiberto P, Boarino L, Celegato F, Coisson M, Enrico E, de Leo N, Vinai F, Allia P. J. Nanopart. Res., 2011, 13: 4211-4218
[33]  Ren Y, Jain S, Adeyeye A O, Ross C A. New J. Phys., 2010, 12: art. no. 093003
[34]  Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem., 2009, 48: 60-103
[35]  Zhou X M, Wei X W. Cryst. Growth Des., 2009, 9: 7-12
[36]  Azizi A, Sadrnezhaad S K. J. Alloys Compd. 2009, 485: 484-487
[37]  Azizi A. Mater. Sci. Eng. B, 2011, 176: 1517-1520
[38]  Zhang W H, Quan X, Zhang Z Y. J. Environ. Sci., 2007, 19: 362-366
[39]  Schrick B, Blough J L, Jones A D, Mallouk T E. Chem. Mater., 2002, 14: 5140-5147
[40]  Tanaka A, Yoon S H, Mochida I. Carbon, 2004, 42: 1291-1298
[41]  Li X C, Gong R Z, Nie Y, Zhao Z S, He H H. Mater. Chem. Phys., 2005, 94: 408-411
[42]  Feng Y B, Qiu T. J. Alloys Compd., 2012, 513: 455-459
[43]  Ueda Y, Takahashi M. J. Phys. Soc. Jpn., 1980, 9: 477
[44]  Dong X L, Zhang Z D, Jin S R, Sun W M, Zhao X G, Li Z J, Chuang Y C. J. Mater. Res., 1999, 14: 1782-1790
[45]  Dong X L, Zhang Z D, Zhao X G, Chuang Y C, Jin S R, Sun W M. J. Mater. Res., 1999, 14: 398-406
[46]  Liu Y S, Zhang J C, Yu L M, Jia G Q, Jing C, Cao S X. J. Magn. Magn. Mater., 2005, 285: 138-144
[47]  Guillaume C E. C R. Acad. Sci. Paris, 1897, 125: 235-238
[48]  Ramaye Y, Neveu S, Cabuil V. J. Magn. Magn. Mater., 2005, 289: 28-31
[49]  Herzer G. IEEE Trans. Magn., 1990, 26: 1397-1402
[50]  Herzer G. Scr. Metall. Mater., 1995, 33: 1741-1756
[51]  Strom-Olsen J. Mater. Sci. Eng. A, 1994, A178: 239-243
[52]  Clow B B. Adv. Mater. Processes, 1996, 150: 33-34
[53]  Tourillon G, Pontonnier L, Levy J P, Langlais V. Electrochem. Solid-State Lett., 2000, 3: 20-23
[54]  Yang Y W, Chen Y B, Liu F, Chen X Y, Wu Y C. Electrochim. Acta, 2011, 56: 6420-6425
[55]  Inguanta R, Rinaldo E, Piazza S, Sunseri C. Electrochem. Solid-State Lett., 2010, 13: K1-K4
[56]  Xue S H, Li M, Wang Y H, Xu X M. Thin Solid Films, 2009, 517: 5922-5926
[57]  Nur U S, Kok K Y, Ng I K. Adv. Mater. Res., 2012, 364: 303-307
[58]  Atalay F E, Kaya H, Atalay S, Tari S. J. Alloys Compd., 2009, 469: 458-463
[59]  Bogart L K, Atkinson D, O’Shea K, McGrouther D, McVitie S. Phys. Rev. B, 2009, 79: art. no. 054414
[60]  Petit D, Jausovec A V, Read D, Cowburn R P. J. Appl. Phys., 2008, 103: art. no. 114307
[61]  Liew H F, Low S C, Lew W S. J. Phys. Conf. Ser., 2011, 266: art. no. 012058
[62]  Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S. Appl. Phys. A, 2007, 87: 773-780
[63]  Lv R T, Kang F Y, Cai D Y, Wang C, Gu J L, Wang K L, Wu D H. J. Phys. Chem. Solids, 2008, 69: 1213-1217
[64]  Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W. J. Alloys Compd., 2010, 495: 200-204
[65]  Wei X W, Zhu G X, Zhou J H, Sun H Q. Mater. Chem. Phys., 2006, 100: 481-485
[66]  Suh Y J, Jang H D, Chang H, Kim W B, Kim H C. Powder Technol., 2006, 161: 196-201
[67]  Jia J, Yu J C, Wang Y X J, Chan K M. ACS Appl. Mater. Interfaces, 2010, 2: 2579-2584
[68]  Xu Y B, Hirohata A, Lopez-Diaz L, Leung H T, Tselepi M, Gardiner S M, Lee W Y, Bland J A C, Rousseaux F, Cambril E, Launois H. J. Appl. Phys., 2000, 87: 7019-7021
[69]  Terris B D, Albrecht M, Hu G, Thomson T, Rettner C T. IEEE Trans. Magn., 2005, 41: 2822-2827
[70]  McClelland G M, Hart M W, Rettner C T, Best M E, Carter K R, Terris B D. Appl. Phys. Lett., 2002, 81: 1483-1485
[71]  Niu D X, Zou X, Wu J, Xu Y B. IEEE Trans. Magn., 2008, 44: 2749-2752
[72]  Miller M M, Prinz G A, Cheng S F, Bounnak S. Appl. Phys. Lett., 2002, 81: 2211-2213
[73]  Ren Y, Adeyeye A O. J. Appl. Phys., 2009, 105: art. no. 063901
[74]  Wang H Z, Li J G, Kou X L, Zhang L. J. Cryst. Growth, 2008, 310: 3072-3076
[75]  Ciszek J W, Huang L, Wang Y, Mirkin C A. Small, 2008, 4: 206-210
[76]  Liu L J, Guan J G, Shi W D, Sun Z G, Zhao J S. J. Phys. Chem. C, 2010, 114: 13565-13570
[77]  Hong Y, Rheem Y, Lai M, Cwiertny D M, Walker S L, Myung N V. Chem. Eng. J., 2009, 151: 66-72
[78]  Schlup W, Grewe H. Int. J. Mater. Prod. Technol., 1990, 5: 281-292
[79]  Jartych E, Zurawicz J K, Oleszak D, Pekala M. J. Magn. Magn. Mater., 2000, 208: 221-230
[80]  Kaloshkin S D, Tcherdyntsev V V, Tomilin I A, Baldokhin Y V, Shelekhov E V. Phys. B Condens. Matter., 2001, 299: 236-241
[81]  Zhu L H, Huang Q W. Mater. Lett., 2003, 57: 4070-4073
[82]  Fecht H J, Hellstern E, Fu Z, Johnson W L. Metall. Trans. A, 1990, 21A: 2333-2337
[83]  Frase H N, Shull R D, Hong L B, Stephens T A, Gao Z Q, Fultz B. Nanostruct. Mater., 1999, 11: 987-993
[84]  Le Caer G, Ziller T, Delcroix P, Bellouard C. Hyperfine Interact., 2000, 130: 45-70
[85]  Zhou P H, Deng L J, Xie J L, Liang D F, Chen L. J. Electron. Sci. Technol. China, 2005, 3: 164-167

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133