全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2013 

离子液体为新型前驱体制备含氮碳纳米材料及其应用

DOI: 10.7536/PC130117, PP. 1703-1712

Keywords: 离子液体,前驱体,含氮碳材料,无模板合成

Full-Text   Cite this paper   Add to My Lib

Abstract:

离子液体具有绿色环保、不易挥发、加工性强、稳定性高以及结构设计性强等特点,最近几年在合成碳纳米材料中的应用引起了人们的广泛关注。虽然对离子液体的成碳机理,尤其是成碳时介孔的形成机理尚没有完整的认识,但由其制备的碳纳米材料已初步应用于燃料电池、锂离子电池及电化学电容器等领域。本文介绍了离子液体作为新型前驱体制备含氮碳纳米材料的优势、结构要求及影响含氮量的主要因素,论述了离子液体在制备含氮碳纳米材料(包括介孔碳、碳纳米纤维和辅助碳纳米材料)中的最新研究进展,尤其是利用离子液体可实现含氮介孔碳材料的无模板法合成,并从前驱体的交联、碳化、阴/阳离子组成和孔的缺陷等方面讨论了影响介孔结构形成的因素。

References

[1]  David W I F, Ibberson R M, Matthewman J C, Prassides K, Dennis T J S, Hare J P, Kroto H W, Taylor R, Walton D R M. Nature, 1991, 353(6340): 147—149
[2]  Pan X L, Bao X H. Acc. Chem. Res., 2011, 44(8): 553—562
[3]  Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183—191
[4]  Fu Y, Carlberg B, Lindahl N, Lindvall N, Bielecki J, Matic A, Song Y X, Hu Z L, Lai Z H, Ye L L, Sun J, Zhang Y H, Zhang Y, Liu J. Adv. Mater., 2012, 24(12): 1576—1581
[5]  Fujisawa K, Tojo T, Muramatsu H, Elias A, Vega-Diaz S M, Trista-Lopez F, Kim J H, Hayashi T, Kim Y A, Endo M, Terrones M. Nanoscale, 2011, 3(10): 4359—4364
[6]  Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H. ACS Nano, 2010, 4(4): 1790—1798
[7]  Yu D S, Nagelli E, Du F, Dai L M. J. Phys. Chem. Lett., 2010, 1(14): 2165—2173
[8]  Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6): 2472—2477
[9]  Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M. Chem. Mater., 2005, 17(5): 1241—1247
[10]  李莉香(Li L X), 刘永长(Liu Y C), 耿新(Geng X), 安百刚(An B G). 物理化学学报(Acta Phys. Chim. Sin. ), 2011, 27(2): 443—448
[11]  Xiao K, Liu Y Q, Hu P A, Yu G, Sun Y M, Zhu D B. J. Am. Chem. Soc., 2005, 127(24): 8614—8617
[12]  Artyukhin A B, Stadermann M, Friddle R W, Stroeve P, Bakajin O, Noy A. Nano Lett., 2006, 6(9): 2080—2085
[13]  Misewich J A, Martel R, Avouris P, Tsang J C, Heinze S, Tersoff J. Science, 2003, 300(5620): 783—796
[14]  周晓龙(Zhou X L), 柴扬(Chai Y), 李萍剑(Li P J), 潘光虎(Pan G H), 孙晖(Sun H), 申自勇(Shen Z Y), 张琦锋(Zhang Q F), 吴锦雷(Wu J L). 物理化学学报(Acta Phys. Chim. Sin. ), 2005, 21(10): 1127—1131
[15]  Guldi D M, Rahman G M A, Prato M, Jux N, Qin S H, Ford W. Angew. Chem., 2005, 117(13): 2051—2054
[16]  Lee J M, Park J, Lee S H, Kim H, Yoo S, Kim S O. Adv. Mater., 2011, 23(5): 629—633
[17]  Paek S M, Yoo E, Honma I. Nano Lett., 2008, 9(1): 72—75
[18]  智林杰(Zhi L J), 方岩(Fang Y), 康飞宇(Kang F Y). 新型炭材料(New Carbon Materials), 2011, 26(1): 5—8
[19]  Shin W H, Jeong H M, Kim B G, Kang J K, Choi J W. Nano Lett., 2012, 12(5): 2283—2288
[20]  Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Nature, 2010, 468(7323): 549—552
[21]  Fellinger T P, Su D S, Engenhorst M, Gautam D, Schlogl R, Antonietti M. J. Mater. Chem., 2012, 22(45): 23996—24005
[22]  Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2012, 51(46): 11496—11500
[23]  Parvez K, Yang S B, Hernandez Y, Winter A, Turchanin A, Feng X L, Müllen K. ACS Nano, 2012, 6: 9541—9550
[24]  Paraknowitsch J P, Thomas A, Antonietti M. J. Mater. Chem., 2010, 20(32): 6746—6758
[25]  Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu Z H, Lu G Q. Adv. Funct. Mater., 2009, 19(11): 1800—1809
[26]  Lu A H, Kiefer A, Schmidt W, Schüth F. Chem. Mater., 2003, 16(1): 100—103
[27]  Jang J, Oh J H. Chem. Commun., 2004, 7: 882—883
[28]  Jang J, Li X L, Oh J H. Chem. Commun., 2004, 794—795
[29]  Wu G, Mack N H, Gao W, Ma S G, Zhong R Q, Han J T, Baldwin J K, Zelenay P. ACS Nano, 2012, 6: 9764—9776
[30]  Hsu C H, Wu H M, Kuo P L. Chem. Commun., 2010, 46(40): 7628—7630
[31]  Li X H, Zhang J S, Chen X F, Fische A, Thomas A, Antonietti M, Wang X C. Chem. Mater., 2011, 23(19): 4344—4348
[32]  Goettmann F, Fischer A, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2006, 45(27): 4467—4471
[33]  Vinu A, Srinivasu P, Sawant D P, Mori T, Ariga K, Chang J S, Jhung S H, Balasubramanian V V, Hwang Y K. Chem. Mater., 2007, 19(17): 4367—4372
[34]  Rogers R D, Voth G A. Acc. Chem. Res., 2007, 40(11): 1077—1078
[35]  Armand M, Endres F, MacFarlane D R, Ohno H, Scrosati B. Nat. Mater., 2009, 8(8): 621—629
[36]  Wilkes J S, Zaworotko M J. Journal of the Chemical Society, Chem. Commun., 1992, (13): 965—967
[37]  Forsyth S A, Pringle J M, MacFarlane D R. Aust. J. Chem., 2004, 57(2): 113—119
[38]  Lu W, Fadeev A G, Qi B, Smela E, Mattes B R, Ding J, Spinks G M, Mazurkiewicz J, Zhou D Z, Wallace G G, MacFarlane D R, Forsyth S A, Forsyth M. Science, 2002, 297(5583): 983—987
[39]  Torimoto T, Tsuda T, Okazaki K I, Kuwabata S. Adv. Mater., 2010, 22(11): 1196—1221
[40]  Antonietti M, Kuang D, Smarsly B, Zhou Y. Angew. Chem. Int. Ed., 2004, 43(38): 4988—4992
[41]  Kim T, Lee H, Kim J, Suh K S. ACS Nano, 2010, 4(3): 1612—1618
[42]  Zhang H, Cui H. Langmuir, 2009, 25(5): 2604—2612
[43]  Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R, Dai S. Angew. Chem. Int. Ed., 2011, 50(21): 4918—4922
[44]  Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124(6): 926—927
[45]  Lee J S, Wang X Q, Luo H M, Baker G A, Dai S. J. Am. Chem. Soc., 2009, 131(13): 4596—4597
[46]  Lee J S, Wang X Q, Luo H M, Dai S. Adv. Mater., 2010, 22(9): 1004—1007
[47]  Yuan J Y, Giordano C, Antonietti M. Chem. Mater., 2010, 22(17): 5003—5012
[48]  Lee J S, Luo H M, Baker G A, Dai S. Chem. Mater., 2009, 21(20): 4756—4758
[49]  Fredlake C P, Crosthwaite J M, Hert D G, Aki S N V K, Brennecke J F. J. Chem. Eng. Data, 2004, 49(4): 954—956
[50]  Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103(37): 7743—7746
[51]  Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B. Zhao D Y. J. Am. Chem. Soc., 2005, 127(39): 13508—13509
[52]  Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46(7): 1089—1093
[53]  Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43(43): 5785—5789
[54]  Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128(16): 5316—5317
[55]  Groenewolt M, Antonietti M. Adv. Mater., 2005, 17(14): 1789—1792
[56]  Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202—2205
[57]  Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J O, Schlogl R, Carlsson J M. J. Mater. Chem., 2008, 18(41): 4893—4908
[58]  Fulvio P F, Lee J S, Mayes R T, Wang X Q, Mahurin S M, Dai S. Phys. Chem. Chem. Phys., 2011, 13(30): 13486—13491
[59]  Kim C, Yang K S, Kojima M, Yoshida K, Kim Y J, Kim Y A, Endo M. Adv. Funct. Mater., 2006, 16(18): 2393—2397
[60]  Li H S, Shen L F, Zhang X G, Nie P, Chen L, Xu K. J. Electrochem. Soc., 2012, 159(4): A426—A430
[61]  Vamvakaki V, Tsagaraki K, Chaniotakis N. Anal. Chem., 2006, 78(15): 5538—5542
[62]  Yang X J, Guillorn M A, Austin D, Melechko A V, Cui H T, Meyer H M, Merkulov V I, Caughman J B O, Lowndes D H, Simpson M L. Nano Lett., 2003, 3(12): 1751—1755
[63]  Che G, Lakshmi B B, Martin C R, Fisher E R, Ruoff R S. Chem. Mater., 1998, 10(1): 260—267
[64]  Lim S, Yoon S H, Mochida I, Jung D H. Langmuir, 2009, 25(14): 8268—8273
[65]  Liang Y Y, Schwab M G, Zhi L J, Mugnaioli E, Kolb U, Feng X L, Müllen K. J. Am. Chem. Soc., 2010, 132(42): 15030—15037
[66]  Zhao Y, Cao X Y, Jiang L. J. Am. Chem. Soc., 2007, 129(4): 764—765
[67]  Liu W Y, Thomopoulos S, Xia Y N. Adv. Healthc. Mater., 2012, 1(1): 10—25
[68]  Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46(30): 5670—5703
[69]  Chen H Y, Di J C, Wang N, Dong H, Wu J, Zhao Y, Yu J H, Jiang L. Small, 2011, 7(13): 1779—1783
[70]  Chen H, Elabd Y A. Macromolecules, 2009, 42(9): 3368—3373
[71]  Jacob D S, Genish I, Klein L, Gedanken A. J. Phys. Chem. B, 2006, 110(36): 17711—17714
[72]  Zhao L, Hu Y S, Li H, Wang Z X, Chen L Q. Adv. Mater., 2011, 23(11): 1385—1388
[73]  Paraknowitsch J P, Zhang Y J, Thomas A. J. Mater. Chem., 2011, 21(39): 15537—15543
[74]  Maldonado S, Stevenson K J. J. Phys. Chem. B, 2004, 108(31): 11375—11383
[75]  Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J. Am. Chem. Soc., 2006, 128(12): 3956—3964
[76]  Yang L, Cheng S, Ding Y, Zhu X B, Wang Z L, Liu M L. Nano Lett., 2012, 12(1): 321—325
[77]  Lee J S, Kwon O S, Park S J, Park E Y, You S A, Yoon H, Jang J. ACS Nano, 2011, 5(10): 7992—8001
[78]  Wang Y, Zhang J S, Wang X C, Antonietti M, Li H R. Angew. Chem. Int. Ed., 2010, 49(19): 3356—3359
[79]  Czerw R, Terrones M, Charlier J C, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan P M, Blau W, Rühle M, Carroll D L. Nano Lett., 2001, 1(9): 457—460
[80]  Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76—80
[81]  Yang W, Fellinger T P, Antonietti M. J. Am. Chem. Soc., 2010, 133(2): 206—209
[82]  Reddy A L M., Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M. ACS Nano, 2010, 4(11): 6337—6342
[83]  Yuan J, Marquez A G, Reinacher J, Giordano C, Janek J, Antonietti M. Polym. Chem., 2011, 2(8): 1654—1657
[84]  Fechler N, Fellinger T P, Antonietti M. Chem. Mater., 2012, 24(4), 713—719
[85]  Zhong M J, Natesakhawat S, Baltrus J P, Luebke D, Nulwala H, Matyjaszewski K, Kowalewski T. Chem. Commun., 2012, 48(94): 11516—11518
[86]  Chen S, Bi J, Zhao Y, Yang L J, Zhang C, Ma Y W, Wu Q, Wang X Z, Hu Z. Adv. Mater., 2012, 24(41): 5593—5597
[87]  Park S, Hu Y C, Hwang J O, Lee E S, Casabianca L B, Cai W, Potts J R, Ha H W, Chen S S, Oh J, Kim S O, Kim Y H, Ishii Y, Ruoff R S. Nat. Commun., 2012, 3: art. no. 638
[88]  Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Lee C S. ACS Nano, 2012, 6(3): 1970—1978
[89]  Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096—16102
[90]  Saufi S M, Ismail A F. Carbon, 2004, 42(2) : 241—259
[91]  Jin X, Balasubramanian V V, Selvan S T, Sawant D P, Chari M A, Lu G Q, Vinu A. Angew. Chem., 2009, 121(42): 8024—8027
[92]  Lewandowski A, ?widerska-Mocek A. J. Power Sources, 2009, 194(2): 601—609
[93]  Rogers R D, Seddon K R. Science, 2003, 302(5646): 792—793
[94]  Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430(7003): 1012—1016
[95]  Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2002, 124(21): 5962—5963
[96]  Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125(21): 6386—6387
[97]  Ma Z, Yu J H, Dai S. Adv. Mater., 2010, 22(2): 261—285
[98]  Park M J, Lee J K, Lee B S, Lee Y W, Choi I S, Lee S G. Chem. Mater., 2006, 18(6): 1546—1551
[99]  Wu B H, Hu D, Kuang Y J, Liu B, Zhang X H, Chen J H. Angew. Chem. Int. Ed., 2009, 48(26): 4751—4754
[100]  Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126(16): 5300—5308
[101]  Wang X Q, Dai S. Angew. Chem. Int. Ed., 2010, 49(37): 6664—6668
[102]  Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2010, 49(43): 7987—7991
[103]  Kuhn P, Forget A, Hartmann J, Thomas A, Antonietti M. Adv. Mater., 2009, 21(8): 897—901

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133