全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2013 

固体氧化物电解池NOx电化学还原技术

DOI: 10.7536/PC130134, PP. 1648-1655

Keywords: 固体氧化物电解池,NOx,电化学还原,电极

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于固体氧化物电解池(SOEC)的NOx电化学还原技术不使用还原剂,避免了还原剂泄露造成的二次污染,可省去庞大复杂的还原剂储存、转化系统,是燃烧后NOx污染物排放控制的潜在技术之一。本文较为详细地介绍了NOx还原SOEC反应器的工作原理、NOx转化电极材料、结构特点和电解池组堆方式,综述了基于SOEC的NOx电化学还原技术的发展现状,针对NOx电化学还原反应特性,总结NOx电化学还原的效率评价指标,提出电解催化电极层、多孔电解质、对称电极、NOx富集等反应器构型设计思路,并展望今后NOx电化学还原专用反应器的研发前景。

References

[1]  Wark K, Warner C F, Davis W T. Air Pollution: its Origin and Control. 3rd ed. USA, Addison Wesley Longman, 1998
[2]  Huang T J, Wang C H. Chemical Engineering Journal, 2011, 173(2): 530— 535
[3]  Hansen K K. Applied Catalysis B: Environmental, 2005, 58(1/2): 33—39
[4]  Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 93(3/4): 309—314
[5]  Bredikhin S, Matsuda K, Maeda K, Awano M. Solid State Ionics, 2002, 149(3/4): 327—333
[6]  Gür T M, Huggins R A. Journal of The Electrochemical Society, 1979, 126 (6): 1067—1075
[7]  Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 93 (1/2): 17—31
[8]  Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 19—29
[9]  Hibino T, Inoue T, Sano M. Solid State Ionics, 2000, 130 (1/2): 31—39
[10]  Hansen K K. Journal of Applied Electrochemistry, 2008, 38(5): 591—595
[11]  Hiramatsu T, Bredikhin S I, Katayama S, Shiono O, Hamamolto K, Fujishiro Y, Awano M. Journal of Electroceramics, 2004, 13(1/3): 865—870
[12]  Bredikhin S, Maeda S, Awano M. Solid State Ionics, 2001, 144(1/2): 1—9
[13]  Bredikhin S, Maeda K, Awano M. Journal of The Electrochemical Society, 2001, 148 (10): D133—D138
[14]  Bredikhin S, Maeda K, Awano M. Solid State Ionics, 2002, 152/153: 727— 733
[15]  Awano M, Bredikhin S, Aronin A, Abrosimova G, Katayama S, Hiramatsu T. Solid State Ionics, 2004, 175(1/4): 605—608
[16]  Aronin A, Abrosimova G, Bredikhin S, Matsuda K, Maeda K. Journal of the American Ceramic Society, 2005, 88 (5): 1180—1185
[17]  Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153(11): D167—D170
[18]  Reinhardt G, Wiemhfer H D, Gpel W. Ionics, 1995, 1(1): 32—39
[19]  Brstrup F, Hansen K K. Journal of Applied Electrochemistry, 2009, 39(12): 2369—2374
[20]  Zhu J J, Thomas A. Applied Catalysis B: Environmental, 2009, 92 (3/4): 225—233
[21]  MacLeod N, Williams F J, Tikhov M S, Lambert R M. Angewandte Chemie International Edition, 2005, 44(24): 3730—3732
[22]  Lucas-Consuegra A, Caravaca A, Dorado F, Valverde J L. Catalysis Today, 2009, 146(3/4): 330—335
[23]  Teraoka Y, Kanada K, Kagawa S. Applied Catalysis B: Environmental, 2001, 34 (1): 73—78
[24]  Epling W S, Campbell L E, Yezerets A, Currier N W, Parks J E. Catalysis Reviews, 2004, 46(2): 163—245
[25]  Lu C, Sholklapper T Z, Jacobson C P, Visco S J, Jonghe L C. Journal of The Electrochemical Society, 2006, 153 (6): A1115—A1119
[26]  Jiang S P, Duan Y Y, Love J G. Journal of The Electrochemical Society, 2002, 149 (9): A1175—A1183
[27]  Hansen K K, Wandel M, Liu Y L, Mogensen M. Electrochimica Acta, 2010, 55 (15): 4606—4609
[28]  Lee H Y, Cho W S, Oh S M, Wiemhofer H D, Gopel W. Journal of The Electrochemical Society, 1995, 142(8): 2659—2664
[29]  Werchmeister R M L, Hansen K K, Mogensen M. Journal of The Electrochemical Society, 2010, 157 (5): 35—42
[30]  Nakamura T, Sakamoto Y, Saji K, Sakata J. Sensors and Actuators B, 2003, 93 (1/3): 214—220
[31]  Hibino T, Ushiki K, Kuwahara Y. Solid State Ionics, 1997, 98 (3/4): 185—190
[32]  Hamamoto K, Suzuki T, Fujishiro Y. Journal of The Electrochemical Society, 2011, 158 (8): B1050—B1053
[33]  Katayama S, Hiramatsu T, Shiono O, Hamamoto K, Fujishiro Y, Awano M. Journal of the Ceramic of Janpan, 2004, 112(5): S1059—S1062
[34]  Yosihara Y, Shinoda W, Tominada K. Development of ECR (Electro-Chemical Reduction) System for Simultaneous Reduction of NOx and PM in Diesel Exhaust. Workshop in Catalytic and Electro-Catalytic Flue Gas Purification. Nagoya, Japan, 2011.9
[35]  Werchmeister R M L. NO Conversion Electrocatalysts. Doctoral Dissertation of Technical University of Denmark, 2010
[36]  Thomas J M, Thomas W J. Principles and Practice of Heterogenous Catalysis. Weinheim: VCH Verlagsgesellschaft mbH, 1997
[37]  Traulsen M L, Andersen K B, Hansen K K. J. Mater. Chem., 2012, 22(23): 11792—11800
[38]  He Z, Andersen K B, Keel L, Nygaard F B, Menon M, Hansen K K. Ionics, 2009, 15(4): 427—431
[39]  Bredikhin S, Awano M. Electrochemical Cells-New Advances in Fundamental Researches and Applications. Shao Y, Ed, InTech, 2012
[40]  Hamamoto K. Electrochemical decomposition of NOx. Topsφe Catalysis Forum: Catalysis in new environmental processes. Munkerupgaard, Denmark. 2009.8
[41]  王睿(Wang R), 吴丹( Wu D), 赵大传( Zhao D C), 于慧(Yu H), 赵海霞(Zhao H X). 现代化工(Modern Chemical Industry), 2006, 26( Z2): 120—123
[42]  Hansen K K. Applied Catalysis B: Environmental, 2010, 100(3/4): 427—432
[43]  Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2006, 153 (11): D167—D170
[44]  Pancharatnam S, Huggins R A, Mason D M. Journal of The Electrochemical Society, 1975, 122(7): 869—875
[45]  Walsh K J, Fedkiw P S. Solid State Ionics, 1997, 104 (1/2): 97—108
[46]  Hibino T. Chemistry Letters, 1994, 23(5): 927—930
[47]  Bredikhin S, Abrosimova G, Aronin A, Hamamoto K, Fujishiro Y, Katayama S, Awano M. Journal of The Electrochemical Society, 2004, 151(12): J95—J99
[48]  Bredikhin S, Hamamoto K, Fujishiro Y, Awano M. Ionics, 2009, 15(3): 285—299
[49]  Awano M, Fujishiro Y, Hamamoto K, Katayama S, Bredikhin S. International Journal of Applied Ceramic Technology, 2004, 1(3): 277—286
[50]  Bredikhin S, Abrosimova S, Aronin A, Awano M. Ionics, 2006, 12(1): 33—39
[51]  Hamamoto K, Fujishiro Y, Awano M. Journal of The Electrochemical Society, 2007, 154 (9): F172—F175
[52]  Huang T J, Chou C L. Electrochemistry Communications, 2009, 11(2): 477—480
[53]  Hwang H J, Moon J W, Moon J. Journal of the American Ceramic Society, 2005, 88(1): 79—84
[54]  Traulsen M L. Electrochemical reduction of NOx. Doctoral Dissertation of Technical University of Denmark, 2012
[55]  Takahashi N, Shinjoh H, Iijima T, Suzuki T, Yamazaki K, Yokota K, Suzuki H, Miyoshi N, Matsumoto S, Tanizawa T, Tanaka T, Tateishi S, Kasahara K. Catalysis Today, 1996, 27(1/2): 63—69
[56]  Toops T J, Smith D B, Epling E S, Parks J E, Partridge W P. Applied Catalysis B: Environmental, 2005, 58(3/4): 255—264
[57]  Lesage T, Saussey J, Malo S, Hervieu M, Hedouin C, Blanchard G, Daturi M. Applied Catalysis B: Environmental, 2007, 72(1/2): 166—177
[58]  Lucas-Consuegra A, Caravaca A, Sanchez P, Dorado F, Valverde J L. Journal of Catalysis, 2008, 259(1): 54—65
[59]  Shangguan W F, Teraoka Y, Kagawa S. Applied Catalysis B: Environmental, 1998, 16 (2): 149—154
[60]  Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P. The Journal of Physical Chemistry B, 2001, 105 (51): 12732—12745
[61]  Westerberg B, Fridell E. Journal of Molecular Catalysis A: Chemical, 2001, 165 (1/2): 249—263
[62]  Simonsen V L E, Johnsen M M, Hansen K K. Topics in Catalysis, 2007, 45(1/4): 131—135
[63]  Fricke R, Schreier E, Eckelt R, Richter M, Trunschke A. Topics in Catalysis, 2004, 30/31 (1/4): 193—198

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133