全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2013 

生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯

DOI: 10.7536/PC130332, PP. 1906-1914

Keywords: 乙酰丙酸,γ-戊内酯,催化加氢,生物质,平台化合物

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物质是唯一能替代化石资源转化得到液体燃料及化学品的可再生资源,近年来,催化转化生物质制备各种平台化合物的研究受到了人们越来越广泛的关注。和乙酰丙酸(LA)一样,γ-戊内酯(GVL)也被认为是一种具有广泛应用潜能的新型生物质基平台化合物。目前,人们已经开发出多种催化剂和反应体系用于催化生物质基LA选择性还原制备GVL。根据氢源的不同可将LA制备GVL的途径概括为4种分别以分子H2、甲酸(FA)、合成气和醇类作为氢源的途径。本文着重从氢源的差异来归纳和总结生物质基LA选择性还原制备GVL的途径及其研究进展,以期为寻找一种高效、经济、环保的GVL合成途径提供一些思路和参考。

References

[1]  袁振宏 (Yuan Z H), 罗文 (Luo W), 吕鹏梅 (Lv P M), 王忠铭 (Wang Z M), 李惠文 (Li H W). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (10): 1687—1692
[2]  Field C B, Campbell J E, Lobell D B. Trends Ecol. Evol., 2008, 23: 65—72
[3]  方向晨 (Fang X C). 化工进展 (Chemical Industry and Engineering Progress), 2011, 30 (11): 2333—2339
[4]  Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106: 4044—4098
[5]  王泽 (Wang Z), 林伟刚 (Lin W G), 宋文立 (Song W L), 姚建中 (Yao J Z), 鲁长波 (Lu C B), 都林 (Du L). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1190—1197
[6]  余强 (Yu Q), 庄新姝 (Zhuang X S), 袁振宏 (Yuan Z H), 亓伟 (Qi W), 王琼 (Wang Q), 谭雪松 (Tan X S), 许敬亮 (Xu J L), 张宇 (Zhang Y), 徐慧娟 (Xu H J), 马隆龙 (Ma L L). 化工进展 (Chemical Industry and Engineering Progress), 2012, 31 (4): 784—791
[7]  Rackemann D W, Doherty W O S. Biofuels, Bioprod. Biorefin., 2011, 5: 198—214
[8]  胡磊 (Hu L), 孙勇 (Sun Y), 林鹿 (Lin L). 化学进展 (Progress in Chemistry), 2012, 24 (4): 483—491
[9]  Oser B L, Carson S, Oser M. Food Cosmet. Toxicol., 1965, 3: 563—569
[10]  Bond J Q, Alonso D M, West R M, Dumesic J A. Langmuir, 2010, 26: 16291-16298
[11]  Fegyverneki D, Orha L, Láng G, Horváth I T. Tetrahedron, 2010, 66: 1078—1081
[12]  Chalid M, Heeres H J, Broekhuis A A. J. Appl. Polym. Sci., 2012, 123: 3556—3564
[13]  Bruno T J, Wolk A, Naydich A. Energy Fuels, 2010, 24: 2758—2767
[14]  Mosby W L. J. Org. Chem., 1954, 19: 294—304
[15]  Lange J P, Vestering J Z, Haan R J. Chem. Commun., 2007, 3488—3490
[16]  Al-Shaal M G, Wright W R H, Palkovits R. Green Chem., 2012, 14: 1260—1263
[17]  Primo A, Concepcion P, Corma A. Chem. Commun., 2011, 47: 3613—3615
[18]  Ortiz-Cervantes C, García J J. Inorg. Chim. Acta, 2013, 397: 124—128
[19]  Raspolli-Galletti A M, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14: 688—694
[20]  Raspolli-Galletti A M, Antonetti C, Ribechini E, Colombini M P, Di Nasso N D O, Bonari E. Appl. Energy, 2013, 102: 157—162
[21]  Hengne A M, Rode C V. Green Chem., 2012, 14: 1064—1072
[22]  Heeres H, Handana R, Chunai D, Borromeus R C, Girisuta B, Heeres H J. Green Chem., 2009, 11: 1247—1255
[23]  Alonso D M, Wettstein S G, Bond J Q, Root T W, Dumesic J A. ChemSusChem, 2011, 4: 1078—1081
[24]  Wettstein S G, Bond J Q, Alonso D M, Pham H N, Datye A K, Dumesic J A. Appl. Catal. B, 2012, 117/118: 321—329
[25]  Azadi P, Carrasquillo-Flores R, Pagán-Torres Y J, Gürbüz E I, Farnood R, Dumesic J A. Green Chem., 2012, 14: 1573—1576
[26]  Upare P P, Lee J M, Hwang D W, Halligudi S B, Hwang Y K, Chang J S. J. Ind. Eng. Chem., 2011, 17: 287—292
[27]  Braca G, Galletti A M R, Sbrana G. J. Organomet. Chem., 1991, 417: 41—49
[28]  Starodubtseva E V, Turova O V, Vinogradov M G, Gorshkova L S, Ferapontov V A. Russ. Chem. Bull., 2005, 54: 2374—2378
[29]  Tukacs J M, Király D, Strádi A, Novodárszki G, Eke Z, Dibó G, Kégl T, Mika L T. Green Chem., 2012, 14: 2057—2065
[30]  Chalid M, Broekhuis A A, Heeres H J. J. Mol. Catal. A: Chem., 2011, 341: 14—21
[31]  Gu X, Lu Z H, Jiang H L, Akita T, Xu Q. J. Am. Chem. Soc., 2011, 133: 11822—11825
[32]  Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84: 339—349
[33]  Stratakis M, Garcia H. Chem. Rev., 2012, 112: 4469—4506
[34]  Zhang Y, Cui X, Shi F, Deng Y. Chem. Rev., 2012, 112: 2467—2505
[35]  Bi Q Y, Du X L, Liu Y M, Cao Y, He H Y, Fan K N. J. Am. Chem. Soc., 2012, 134: 8926—8933
[36]  Du X L, Bi Q Y, Liu Y M, Cao Y, Fan K N. ChemSusChem, 2011, 4: 1838—1843
[37]  Yu L, Du X L, Yuan J, Liu Y M, Cao Y, He H Y, Fan K N. ChemSusChem, 2013, 6: 42—46
[38]  Kopetzki D, Antonietti M. Green Chem., 2010, 12: 656—660
[39]  Yung M M, Jablonski W S, Magrini-Bair K A. Energy Fuels, 2009, 23: 1874—1887
[40]  Ruiz J R, Jiménez-Sanchidrián C. Cur. Org. Chem., 2007, 11: 1113—1125
[41]  Fischer G, Schrattenholzer L. Biomass Bioenergy, 2001, 20: 151—159
[42]  Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107: 2411—2502
[43]  林鹿 (Lin L), 何北海 (He B H), 孙润仓 (Sun R C), 胡若飞 (Hu R F). 化学进展 (Progress in Chemistry), 2007, 19 (7/8): 1206—1216
[44]  彭红 (Peng H), 刘玉环 (Liu Y H), 张锦胜 (Zhang J S), 阮榕生 (Ruan R S). 化工进展 (Chemical Industry and Engineering Progress), 2009, 28 (12): 2237—2241
[45]  彭林才 (Peng L C), 林鹿 (Lin L), 李辉 (Li H). 化学进展 (Progress in Chemistry), 2012, 24 (5): 801—809
[46]  Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L, Liu S J. RSC Advances, 2012, 2: 11184—11206
[47]  Horváth I T, Mehdi H, Fábos V, Boda L, Mika L T. Green Chem., 2008, 10: 238—242
[48]  Kamm B. Angew. Chem. Int. Ed., 2007, 46: 5056—5058
[49]  Cannon G W, Casler J J Jr, Gaines W A. J. Org. Chem., 1952, 17: 1245—1251
[50]  Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Green Chem., 2010, 12: 992—999
[51]  Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327: 1110—1114
[52]  Mosby W L. J. Am. Chem. Soc., 1952, 74: 2564—2569
[53]  Mosby W L. J. Org. Chem., 1953, 18: 964—970
[54]  Lee C W, Urakawa R, Kimura Y. Eur. Polym. J., 1998, 34: 117—122
[55]  Manzer L E. Appl. Catal. A, 2004, 272: 249—256
[56]  Schuette H A, Thomas R W. J. Am. Chem. Soc., 1930, 52: 3010—3012
[57]  Kyrides L P, Craver J K. US 2368366, 1945
[58]  Christian R V Jr, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69: 1961—1963
[59]  Dunlop A P, Madden J W. US 2786852, 1957
[60]  Broadbent H S, Campbell G C, Bartley W J, Johnson J H. J. Org. Chem., 1959, 24: 1847—1854
[61]  Yan Z P, Lin L, Liu S. Energy Fuels, 2009, 23: 3853—3858
[62]  Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 4632—4634
[63]  Selva M, Gottardo M, Perosa A. ACS Sustainable Chem. Eng., 2013, 1: 180—189
[64]  Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T. Top. Catal., 2008, 48: 49—54
[65]  Delhomme C, Schaper L A, Zhang-Pree M, Raudaschl-Sieber G, Weuster-Botz D, Kühn F E. J. Organomet. Chem., 2013, 724: 297—299
[66]  Li W, Xie J H, Lin H, Zhou Q L. Green Chem., 2012, 14: 2388—2390
[67]  Laurenczy G, Grasemann M. Energy Environ. Sci., 2012, 5: 8171—8181
[68]  Johnson T C, Morris D J, Wills M. Chem. Soc. Rev., 2010, 39: 81—88
[69]  Weingarten R, Cho J, Xing R, Conner W C, Huber G W. ChemSusChem, 2012, 5: 1280—1290
[70]  Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew. Chem. Int. Ed., 2009, 48: 6529—6532
[71]  Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2011, 50: 7815—7819
[72]  Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q X. ChemSusChem, 2010, 3: 1172—1175
[73]  Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina C D. Angew. Chem. Int. Ed., 2007, 46: 4434—4440
[74]  Graauw C F D, Peters J A, Bekkum H V, Huskens J. Synthesis, 1994, 10: 1007—1017
[75]  Chia M, Dumesic J A. Chem. Commun., 2011, 47: 12233—12235
[76]  Tanabe K, Yamaguchi T. Catal. Today, 1994, 20: 185—198
[77]  Liu S H, Jaenicke S, Chuah G K. J. Catal., 2002, 206: 321—330
[78]  Zhu Y. J. Catal., 2003, 218: 396—404
[79]  Zhu Y, Liu S, Jaenicke S, Chuah G. Catal. Today, 2004, 97: 249—255
[80]  Miambres J F, Aramendía M A, Marinas A, Marinas J M, Urbano F J. J. Mol. Catal. A: Chem., 2011, 338: 121—129

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133