全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

硫化学反应体系中的振荡与斑图形成

DOI: 10.7536/PC130834, PP. 529-544

Keywords: 硫化合物,非线性动力学,斑图形成,耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

硫化学非线性反应体系是非线性化学的一个重要部分,在均相和反应扩散介质中均表现复杂自组织现象,尤其该类体系在前沿波作用、迷宫波及倍增分裂波研究和近几年斑图系统设计的突破起着关键作用。根据参与的物种数量将硫化学反应体系分为简单的两组分和三组分反应体系两大类。本文重点介绍了近三十年来这两类硫化学振荡器和反应-扩散斑图的研究进展,简述了该类反应体系在生物及其软物质领域的应用。最后,对硫化学振荡体系研究中存在的问题进行了探讨,并对今后的研究方向进行了展望。

References

[1]  Bray W C. J. Am. Chem. Soc., 1921, 43: 1262.
[2]  Belousov B P. Compilation of Abstracts on Radiation Medicine, 1959, 147: 1.
[3]  Lee K J, Mccormick W D, Ouyang Q, Swinney H L. Science, 1993, 261: 192.
[4]  Rushing C W, Thompson R C, Gao Q. J. Phys. Chem. A, 2000, 104: 11561.
[5]  Sagués F, Epstein I R. Dalton Transactions, 2003: 1201.
[6]  Ouyang Q, Swinney H L. Chaos, 1991, 1: 411.
[7]  Lee K J, Mccormick W D, Pearson J E, Swinney H L. Nature, 1994, 369: 215.
[8]  Orbán M. J. Am. Chem. Soc., 1986, 108: 6893.
[9]  Luo Y, Orbán M, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 4541.
[10]  Kovács K M, Rábai G. J. Phys. Chem. A, 2001, 105: 9183.
[11]  Mao S, Gao Q, Wang H, Zheng J, Epstein I R. J. Phys. Chem. A, 2009, 113: 1231.
[12]  Orbán M, de Kepper P, Epstein I R. J. Phys. Chem. Lett., 1982, 86: 433.
[13]  Maselko J, Epstein I R. J. Phys. Chem., 1984, 80: 3175.
[14]  Szántó T G, Rábai G. J. Phys. Chem. A, 2005, 109: 5398.
[15]  Bakes D, Schreiberova L, Schreiber I, Hauser M J. Chaos, 2008, 18: 015102.
[16]  Kormanyos B, Nagypál I, Peintler G, Horváth A K. Inorg. Chem., 2008, 47: 7914.
[17]  Peintler G, Nagypál I, Epstein I R. J. Phys. Chem., 1990, 94: 2954.
[18]  Horváth A K. J. Phys. Chem. A, 2005, 109: 5124.
[19]  Horváth A K, Nagypál I, Epstein I R. Inorg. Chem., 2006, 45: 9877.
[20]  Horváth A K, Nagypál I. J. Phys. Chem. A, 2006, 110: 4753.
[21]  Pan C, Liu Y, Horváth A K, Wang Z, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2013, 117: 2924.
[22]  Lu Y, Gao Q, Xu L, Zhao Y, Epstein I R. Inorg. Chem., 2010, 49: 6026.
[23]  Frerichs G A, Mlnarik T M, Grun R J, Thompson R C. J. Phys. Chem. A, 2001, 105: 829.
[24]  Landolt H. Chem. Ber., 1886, 19: 1317.
[25]  Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 2804.
[26]  Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 4831.
[27]  Resch P, Field R J, Schneider F W, Burger M. J. Phys. Chem., 1989, 93: 8181.
[28]  Edblom E C, Gyorgyi L, Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 4876.
[29]  Rábai G, Kaminaga A, Hanazaki I. J. Phys. Chem., 1995, 99: 9795.
[30]  Edblom E C, Luo Y, Orban M, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2722.
[31]  Kaminaga A, Rábai G, Mori Y, Hanazaki I. J. Phys. Chem., 1996, 100: 9389.
[32]  Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 3870.
[33]  Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 8271.
[34]  Mori Y, Hanazaki I. J. Phys. Chem., 1993, 97: 7375.
[35]  Mori Y, Hanazaki I. J. Phys. Chem., 1992, 96: 9083.
[36]  Vanag V K, Mori Y, Hanazaki I. J. Phys. Chem., 1994, 98: 8392.
[37]  Horváth A K. J. Phys. Chem. A, 2008, 112: 3935.
[38]  Epstein I R, Pojman J A. An introduction to nonlinear Chemical Dynamics Oscillations, Waves, Patterns and waves. New York: Oxford University Press, 1998.
[39]  Kapral R, Showalter K. Chemical waves and patterns. Springer, 1995.
[40]  Simoyi R H, Masere J, Muzimbaranda C, Manyonda M, Dube S. Int. J. Chem, Kinet., 1991, 23: 419.
[41]  Martincigh B S, Chinake C R, Howes T, Simoyi R H. Phys. Rev. E, 1997, 55: 7299.
[42]  Udovichenko V V, Strizhak P E, Toth A, Horváth D, Ning S, Maselko J. J. Phys. Chem. A, 2008, 112: 4584.
[43]  Fuentes M, Kuperman M N, De Kepper P. J. Phys. Chem., A, 2001, 105: 6769.
[44]  Horváth D, Toóth A G. J. Chem. Phys., 1998, 108: 1447.
[45]  Horváth D, Kiricsi M, Tóth á. J. Chem. Soc. Faraday Trans., 1998, 94: 1217.
[46]  Viranyi Z, Horváth D, Toth A. J. Phys. Chem. A, 2006, 110: 3614.
[47]  Hele-Shaw H S. Nature, 1898, 58: 520.
[48]  Casado G G, Tofaletti L, Muller D, D'Onofrio A. J Chem. Phys., 2007, 126: 114502.
[49]  Keresztessy A, Nagy I P, Bazsa G, Pojman J A. J. Phys. Chem., 1995, 99: 5379.
[50]  Pojman J A, Komlósi A, Nagy I P. J. Phys. Chem., 1996, 100: 16209.
[51]  Nagy I P, Pojman J A. J. Phys. Chem., 1993, 97: 3443.
[52]  Viranyi Z, Szalai I, Boissonade J, De Kepper P. J. Phys. Chem. A, 2007, 111: 8090.
[53]  Gao Q, An Y, Wang J. Phys. Chem. Chem. Phys., 2004, 6: 5389.
[54]  Gao Q, Xie R. Chem. Phys. Chem., 2008, 9: 1153.
[55]  Liu H, Pojman J A, Zhao Y, Pan C, Zheng J, Yuan L, Horváth A K, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 131.
[56]  Watzl M, Münster A F. Chem. Phys. Lett., 1995, 242: 273.
[57]  Kurin-Csrgei K, Orbán M, Zhabotinsky A M, Epstein I R. Chem. Phys. Lett., 1998, 295: 70.
[58]  Fecher F, Strasser P, Eiswirth M, Schneider F W, Münster A F. Chem. Phys. Lett., 1999, 313: 205.
[59]  Steinbock O, Kasper E, Müller S C. J. Phys. Chem. A, 1999, 103: 3442.
[60]  Szalai I, de Kepper P. Chaos, 2008, 18: 026105.
[61]  Ouyang Q, Swinney H L. Nature, 1991, 352: 610.
[62]  De Kepper P, Dulos E, Boissonade J, De Wit A, Dewel G, Borckmans P. J. Stat. Phys., 2000, 101: 495.
[63]  Perraud J J, de Wit A, Dulos E, De Kepper P, Dewel G, Borckmans P. Phys. Rev. Lett., 1993, 71: 1272.
[64]  De Kepper P, Perraud J J, Rudovics B, Dulos E. Int. J. Bif. Chaos, 1994, 4: 1215.
[65]  Davies P W, Blanchedeau P, Dulos E, de Kepper P. J. Phys. Chem. A, 1998, 102: 8236.
[66]  Vigil R D, Ouyang Q, Swinney H L. Physica A, 1992, 188: 17.
[67]  Asakura K, Konishi R, Nakatani T, Nakano T, Kamata M. J. Phys. Chem. B, 2011, 115: 3959.
[68]  Dolnik M, Berenstein I, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2001, 87: 238301.
[69]  Lengyel I, Epstein I R. Science, 1991, 251: 650.
[70]  Rudovics B, Barillot E, Davies P W, Dulos E, Boissonade J, de Kepper P. J. Phys. Chem. A, 1999, 103: 1790.
[71]  Blanchedeau P, Boissonade J. Phy. Rev. Lett., 1998, 81: 5007.
[72]  Horváth J, Szalai I, de Kepper P. Science, 2009, 324: 772.
[73]  Crook C J, Smith A, Jones R A L, Ryan A J. Phys. Chem. Chem. Phys., 2002, 4: 1367.
[74]  Dano S, Sorensen P G, Hynne F. Nature, 1999, 402: 320.
[75]  Kar S, Shankar Ray D. J. Theor. Biol., 2005, 237: 58.
[76]  Hess B, Brand K, Pye K. Biochem. Biophys. Res. Commun., 1966, 23: 102.
[77]  Harootunian A, Kao J, Paranjape S, Tsien R. Science, 1991, 251: 75.
[78]  Frerichs G A, Thompson R C. J. Phys. Chem. A, 1998, 102: 8142.
[79]  Hauser M J B, Strich A, Bakos R, Nagy-Ungvarai Z, Müller S C. Faraday Discussions, 2002, 120: 229.
[80]  Kurin-Csrgei K, Epstein I R, Orbán M. Nature, 2005, 433: 139.
[81]  Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2006, 110: 7588.
[82]  Labrot V, De Kepper P, Boissonade J, Szalai I, Gauffre F T. J. Phys. Chem. B, 2005, 109: 21476.
[83]  Yang L, Zhabotinsky A M, Epstein I R. Phys. Rev. Lett., 2004, 92: 198303.
[84]  Poros E, Horváth V, Kurin-Csergei K, Epstein I R, Orbán M. J. Am. Chem. Soc., 2011, 133: 7174.
[85]  Lu X, Ren L, Gao Q, Zhao Y, Wang S, Yang J, Epstein I R. Chem. Commun., 2013, 49: 7690.
[86]  Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. New York: Wiley-Interscience, 1977.
[87]  Orbán M, de Kepper P, Epstein I R. J. Am. Chem. Soc., 1982, 104: 2657.
[88]  Orbán M, de Kepper P, Epstein I R. J. Phys. Chem., 1982, 86: 431.
[89]  Rábai G, Szanto T G, Kovacs K. J. Phys. Chem. A, 2008, 112: 12007.
[90]  Orbán M, Epstein I R. J. Phys. Chem., 1982, 86: 3907.
[91]  Doona C J, Doumbouya S I. J. Phys. Chem., 1994, 98: 513.
[92]  Szalai I, De Kepper P. J. Phys. Chem. A, 2008, 112: 783.
[93]  Szalai I, De Kepper P. Chaos, 2008, 18: 026105.
[94]  Orbán M, Epstein I R. J. Am. Chem. Soc., 1985, 107: 2302.
[95]  Rábai G, Orbán M, Epstein I R. J. Phys. Chem., 1992, 96: 5414.
[96]  Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 101.
[97]  Rábai G, Epstein I R. J. Am. Chem. Soc., 1992, 114: 1529.
[98]  Alamgir M, Epstein I R. Int. J. Chem. Kinet., 1985, 17: 429.
[99]  Gao Q, Wang J. Chem. Phys. Lett., 2004, 391: 349.
[100]  Doona C J, Blittersdorf R, Schneider F W. J. Phys. Chem., 1993, 97: 7258.
[101]  Simoyi R H, Noyes R M. J. Phys. Chem., 1987, 91: 2689.
[102]  Simoyi R H. J. Phys. Chem., 1986, 90: 2802.
[103]  Ouyang Q, De Kepper P. J. Phys. Chem., 1987, 91: 6040.
[104]  Orbán M, Epstein I R. J. Am. Chem. Soc., 1989, 111: 2891.
[105]  Orbán M, Epstein I R. J. Am. Chem. Soc., 1990, 112: 1812.
[106]  Rábai G, Beck M T, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2853.
[107]  Yuan L, Gao Q, Zhao Y, Tang X, Epstein I R. J. Phys. Chem. A, 2010, 114: 7014.
[108]  Varga D, Horváth A K, Nagypál I. J. Phys. Chem. B, 2006, 110: 2467.
[109]  Horváth A K, Nagypál I. Int. J. Chem. Kinet., 2000, 32: 395.
[110]  Varga D, Horváth A K. J. Phys. Chem. A, 2009, 113: 13907.
[111]  Horváth A K, Nagypál I. J. Phys. Chem. A, 1998, 102: 7267.
[112]  Horváth A K, Nagypál I, Epstein I R. J. Phys. Chem. A, 2003, 107: 10063.
[113]  Horváth A K, Nagypál I, Peintler G, Epstein I R. J. Am. Chem. Soc., 2004, 126: 6246.
[114]  Cseko G, Horváth A K. J. Phys. Chem. A, 2012, 116: 2911.
[115]  Varga D, Horváth A K. Inorg. Chem., 2007, 46: 7654.
[116]  Xu L, Horváth A K, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2011, 115: 1853.
[117]  Pan C, Wang W, Horváth A K, Xie J, Lu Y, Wang Z, Ji C, Gao Q. Inorg. Chem., 2011, 50: 9670.
[118]  Rábai G. ACH-Models Chem., 1998, 135: 381.
[119]  Rábai G, Nagy Z V, Beck M T. React. Kinet. Catal. Lett., 1987, 33: 23.
[120]  Liu H, Xie J, Yuan L, Gao Q. J. Phys. Chem. A, 2009, 113: 11295.
[121]  Liu H, Horváth A K, Zhao Y, Lv X, Yang L, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 1502.
[122]  Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 7268.
[123]  Burger M, Field R J. Nature, 1984, 307: 720.
[124]  Resch P, Field R J, Schneider F W. J. Phys. Chem., 1989, 93: 2783.
[125]  Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 15454.
[126]  Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 10615.
[127]  Rábai G. J. Phys. Chem. A, 1997, 101: 7085.
[128]  Chie K, Okazaki N, Tanimoto Y, Hanazaki I. Chem. Phys. Lett., 2001, 334: 55.
[129]  Edblom E C, Orbán M, Epstein I R. J. Am. Chem. Soc., 1986, 108: 2826.
[130]  Gaspar V, Showalter K. J. Am. Chem. Soc., 1987, 109: 4869.
[131]  Rábai G, Hanazaki I. J. Am. Chem. Soc., 1997, 119: 1458.
[132]  Okazaki N, Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 10915.
[133]  Rábai G, Orban M. J. Phys. Chem., 1993, 97: 5935.
[134]  Turing A M. Phil. Trans. R. Soc. B, 1952, 237: 37.
[135]  Castets V, Dulos E, Boissonade J, De Kepper P. Phys. Rev. Lett., 1990, 64: 2953.
[136]  Pojman J A, Epstein I R. J. Phys. Chem., 1990, 94: 4966.
[137]  Nagypál I, Bazsa G, Epstein I R. J. Am. Chem. Soc., 1986, 108: 3635.
[138]  Zhivonitko V V, Koptyug I V, Sagdeev R Z. J. Phys. Chem. A, 2007, 111: 4122.
[139]  Chinake C R, Simoyi R H. J. Phys. Chem., 1994, 98: 4012.
[140]  Tóth á, Lagzi I, Horváth D. J. Phys. Chem., 1996, 100: 14837.
[141]  Tóth á, Horváth D, Siska A. J. Chem. Soc. Faraday Trans., 1997, 93: 73.
[142]  Gérard T, Tóth T, Grosfils P, Horváth D, De Wit A, Tóth A. Phys. Rev. E, 2012, 86.
[143]  Schuszter G, Tóth T, Horváth D, Tóth á. Phys. Rev. E, 2009, 79: 016216.
[144]  Boissonade J, Dulos E, Gauffre F, Kuperman M N, de Kepper P. Faraday Discussions, 2002, 120: 353.
[145]  Boissonade J, de Kepper P, Gauffre F, Szalai I. Chaos, 2006, 16: 037110.
[146]  Fuentes M, Kuperman M N, Boissonade J, Dulos E, Gauffre F, De Kepper P. Phys. Rev. E, 2002, 66: 056205.
[147]  Strier D, Boissonade J. Phys. Rev. E, 2004, 70: 016210.
[148]  Nagy I P, Keresztessy A, Pojman J A. J. Phys. Chem., 1995, 99: 5385.
[149]  Szalai I, De Kepper P. Phys. Chem. Chem. Phys., 2006, 8: 1105.
[150]  Lee G, Ouyang Q, Swinney H L. J. Chem. Phys., 1996, 105: 10830.
[151]  Ouyang Q, Noszticzius Z, Swinney H L. J. Phys. Chem., 1992, 96: 6773.
[152]  Rudovics B, Dulos E, De Kepper P. Physi. Scr., 1996, T67: 43.
[153]  Dulos E, Davies P, Rudovics B, De Kepper P. Physica D, 1996, 98: 53.
[154]  Berenstein I, Yang L, Dolnik M, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2003, 91: 058302.
[155]  Míguez D, Pérez-Villar V, Muuzuri A. Phys. Rev. E, 2005, 71: 066217.
[156]  Horváth J, Szalai I, de Kepper P. Physica D, 2010, 239: 776.
[157]  Szalai I, Horváth J, Takacs N, de Kepper P. Phys. Chem. Chem. Phys., 2011, 13: 20228.
[158]  Szalai I, Cuinas D, Takacs N, Horváth J, De Kepper P. Interface Focus, 2012, 2: 417.
[159]  Pearson J E. Science, 1993, 261: 189.
[160]  Glass L, Mackey M C. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, 1988.
[161]  Goldbeter A, Keizer J. Phys. Today, 1998, 51: 86.
[162]  Varga I, Szalai I, Meszaros R, Gilanyi T. J. Phys. Chem. B, 2006, 110: 20297.
[163]  Giannos S A, Dinh S M, Berner B. J. Pharm. Sci., 1995, 84: 539.
[164]  Ohmori T, Yu W, Yamamoto T, Endo A, Nakaiwa M, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 2005, 407: 48.
[165]  Liedl T, Simmel F C. Nano Lett., 2005, 5: 1894.
[166]  Liedl T, Sobey T L, Simmel F C. Nano Today, 2007, 2: 36.
[167]  Goodwin B C. Adv. Enzyme Regul., 1965, 3: 425.
[168]  Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. J. Pharmacol Sci., 2005, 97: 212.
[169]  Mahowald M W, Schenck C H. Nature, 2005, 437: 1279.
[170]  Vanag V K. J. Phys. Chem. A, 1998, 102: 601.
[171]  Misra G. J. Controlled Release, 2002, 79: 293.
[172]  Horváth V, Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2008, 112: 4271.
[173]  Kovács K, Leda M, Vanag V K, Epstein I R. J. Phys. Chem. A, 2009, 113: 146.
[174]  Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138.
[175]  Ghosh P, Spiro T G. J. Am. Chem. Soc., 1980, 102: 5543.
[176]  Yoshida R. Ichijo H, Hakuta T, Yamaguchi T. Macr. Rapid Commun., 1995, 16: 305.
[177]  Rábai G. Phys. Chem. Chem. Phys., 2011, 13: 13604.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133