Belousov B P. Compilation of Abstracts on Radiation Medicine, 1959, 147: 1.
[3]
Lee K J, Mccormick W D, Ouyang Q, Swinney H L. Science, 1993, 261: 192.
[4]
Rushing C W, Thompson R C, Gao Q. J. Phys. Chem. A, 2000, 104: 11561.
[5]
Sagués F, Epstein I R. Dalton Transactions, 2003: 1201.
[6]
Ouyang Q, Swinney H L. Chaos, 1991, 1: 411.
[7]
Lee K J, Mccormick W D, Pearson J E, Swinney H L. Nature, 1994, 369: 215.
[8]
Orbán M. J. Am. Chem. Soc., 1986, 108: 6893.
[9]
Luo Y, Orbán M, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 4541.
[10]
Kovács K M, Rábai G. J. Phys. Chem. A, 2001, 105: 9183.
[11]
Mao S, Gao Q, Wang H, Zheng J, Epstein I R. J. Phys. Chem. A, 2009, 113: 1231.
[12]
Orbán M, de Kepper P, Epstein I R. J. Phys. Chem. Lett., 1982, 86: 433.
[13]
Maselko J, Epstein I R. J. Phys. Chem., 1984, 80: 3175.
[14]
Szántó T G, Rábai G. J. Phys. Chem. A, 2005, 109: 5398.
[15]
Bakes D, Schreiberova L, Schreiber I, Hauser M J. Chaos, 2008, 18: 015102.
[16]
Kormanyos B, Nagypál I, Peintler G, Horváth A K. Inorg. Chem., 2008, 47: 7914.
[17]
Peintler G, Nagypál I, Epstein I R. J. Phys. Chem., 1990, 94: 2954.
[18]
Horváth A K. J. Phys. Chem. A, 2005, 109: 5124.
[19]
Horváth A K, Nagypál I, Epstein I R. Inorg. Chem., 2006, 45: 9877.
[20]
Horváth A K, Nagypál I. J. Phys. Chem. A, 2006, 110: 4753.
[21]
Pan C, Liu Y, Horváth A K, Wang Z, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2013, 117: 2924.
[22]
Lu Y, Gao Q, Xu L, Zhao Y, Epstein I R. Inorg. Chem., 2010, 49: 6026.
[23]
Frerichs G A, Mlnarik T M, Grun R J, Thompson R C. J. Phys. Chem. A, 2001, 105: 829.
[24]
Landolt H. Chem. Ber., 1886, 19: 1317.
[25]
Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 2804.
[26]
Rábai G, Beck M T. J. Phys. Chem., 1988, 92: 4831.
[27]
Resch P, Field R J, Schneider F W, Burger M. J. Phys. Chem., 1989, 93: 8181.
[28]
Edblom E C, Gyorgyi L, Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 4876.
[29]
Rábai G, Kaminaga A, Hanazaki I. J. Phys. Chem., 1995, 99: 9795.
[30]
Edblom E C, Luo Y, Orban M, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2722.
[31]
Kaminaga A, Rábai G, Mori Y, Hanazaki I. J. Phys. Chem., 1996, 100: 9389.
[32]
Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 3870.
[33]
Rábai G, Kustin K, Epstein I R. J. Am. Chem. Soc., 1989, 111: 8271.
[34]
Mori Y, Hanazaki I. J. Phys. Chem., 1993, 97: 7375.
[35]
Mori Y, Hanazaki I. J. Phys. Chem., 1992, 96: 9083.
[36]
Vanag V K, Mori Y, Hanazaki I. J. Phys. Chem., 1994, 98: 8392.
[37]
Horváth A K. J. Phys. Chem. A, 2008, 112: 3935.
[38]
Epstein I R, Pojman J A. An introduction to nonlinear Chemical Dynamics Oscillations, Waves, Patterns and waves. New York: Oxford University Press, 1998.
[39]
Kapral R, Showalter K. Chemical waves and patterns. Springer, 1995.
[40]
Simoyi R H, Masere J, Muzimbaranda C, Manyonda M, Dube S. Int. J. Chem, Kinet., 1991, 23: 419.
[41]
Martincigh B S, Chinake C R, Howes T, Simoyi R H. Phys. Rev. E, 1997, 55: 7299.
[42]
Udovichenko V V, Strizhak P E, Toth A, Horváth D, Ning S, Maselko J. J. Phys. Chem. A, 2008, 112: 4584.
[43]
Fuentes M, Kuperman M N, De Kepper P. J. Phys. Chem., A, 2001, 105: 6769.
[44]
Horváth D, Toóth A G. J. Chem. Phys., 1998, 108: 1447.
[45]
Horváth D, Kiricsi M, Tóth á. J. Chem. Soc. Faraday Trans., 1998, 94: 1217.
[46]
Viranyi Z, Horváth D, Toth A. J. Phys. Chem. A, 2006, 110: 3614.
[47]
Hele-Shaw H S. Nature, 1898, 58: 520.
[48]
Casado G G, Tofaletti L, Muller D, D'Onofrio A. J Chem. Phys., 2007, 126: 114502.
[49]
Keresztessy A, Nagy I P, Bazsa G, Pojman J A. J. Phys. Chem., 1995, 99: 5379.
[50]
Pojman J A, Komlósi A, Nagy I P. J. Phys. Chem., 1996, 100: 16209.
[51]
Nagy I P, Pojman J A. J. Phys. Chem., 1993, 97: 3443.
[52]
Viranyi Z, Szalai I, Boissonade J, De Kepper P. J. Phys. Chem. A, 2007, 111: 8090.
[53]
Gao Q, An Y, Wang J. Phys. Chem. Chem. Phys., 2004, 6: 5389.
[54]
Gao Q, Xie R. Chem. Phys. Chem., 2008, 9: 1153.
[55]
Liu H, Pojman J A, Zhao Y, Pan C, Zheng J, Yuan L, Horváth A K, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 131.
[56]
Watzl M, Münster A F. Chem. Phys. Lett., 1995, 242: 273.
[57]
Kurin-Csrgei K, Orbán M, Zhabotinsky A M, Epstein I R. Chem. Phys. Lett., 1998, 295: 70.
[58]
Fecher F, Strasser P, Eiswirth M, Schneider F W, Münster A F. Chem. Phys. Lett., 1999, 313: 205.
[59]
Steinbock O, Kasper E, Müller S C. J. Phys. Chem. A, 1999, 103: 3442.
[60]
Szalai I, de Kepper P. Chaos, 2008, 18: 026105.
[61]
Ouyang Q, Swinney H L. Nature, 1991, 352: 610.
[62]
De Kepper P, Dulos E, Boissonade J, De Wit A, Dewel G, Borckmans P. J. Stat. Phys., 2000, 101: 495.
[63]
Perraud J J, de Wit A, Dulos E, De Kepper P, Dewel G, Borckmans P. Phys. Rev. Lett., 1993, 71: 1272.
[64]
De Kepper P, Perraud J J, Rudovics B, Dulos E. Int. J. Bif. Chaos, 1994, 4: 1215.
[65]
Davies P W, Blanchedeau P, Dulos E, de Kepper P. J. Phys. Chem. A, 1998, 102: 8236.
[66]
Vigil R D, Ouyang Q, Swinney H L. Physica A, 1992, 188: 17.
[67]
Asakura K, Konishi R, Nakatani T, Nakano T, Kamata M. J. Phys. Chem. B, 2011, 115: 3959.
[68]
Dolnik M, Berenstein I, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2001, 87: 238301.
[69]
Lengyel I, Epstein I R. Science, 1991, 251: 650.
[70]
Rudovics B, Barillot E, Davies P W, Dulos E, Boissonade J, de Kepper P. J. Phys. Chem. A, 1999, 103: 1790.
[71]
Blanchedeau P, Boissonade J. Phy. Rev. Lett., 1998, 81: 5007.
[72]
Horváth J, Szalai I, de Kepper P. Science, 2009, 324: 772.
[73]
Crook C J, Smith A, Jones R A L, Ryan A J. Phys. Chem. Chem. Phys., 2002, 4: 1367.
[74]
Dano S, Sorensen P G, Hynne F. Nature, 1999, 402: 320.
[75]
Kar S, Shankar Ray D. J. Theor. Biol., 2005, 237: 58.
Harootunian A, Kao J, Paranjape S, Tsien R. Science, 1991, 251: 75.
[78]
Frerichs G A, Thompson R C. J. Phys. Chem. A, 1998, 102: 8142.
[79]
Hauser M J B, Strich A, Bakos R, Nagy-Ungvarai Z, Müller S C. Faraday Discussions, 2002, 120: 229.
[80]
Kurin-Csrgei K, Epstein I R, Orbán M. Nature, 2005, 433: 139.
[81]
Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2006, 110: 7588.
[82]
Labrot V, De Kepper P, Boissonade J, Szalai I, Gauffre F T. J. Phys. Chem. B, 2005, 109: 21476.
[83]
Yang L, Zhabotinsky A M, Epstein I R. Phys. Rev. Lett., 2004, 92: 198303.
[84]
Poros E, Horváth V, Kurin-Csergei K, Epstein I R, Orbán M. J. Am. Chem. Soc., 2011, 133: 7174.
[85]
Lu X, Ren L, Gao Q, Zhao Y, Wang S, Yang J, Epstein I R. Chem. Commun., 2013, 49: 7690.
[86]
Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. New York: Wiley-Interscience, 1977.
[87]
Orbán M, de Kepper P, Epstein I R. J. Am. Chem. Soc., 1982, 104: 2657.
[88]
Orbán M, de Kepper P, Epstein I R. J. Phys. Chem., 1982, 86: 431.
[89]
Rábai G, Szanto T G, Kovacs K. J. Phys. Chem. A, 2008, 112: 12007.
[90]
Orbán M, Epstein I R. J. Phys. Chem., 1982, 86: 3907.
[91]
Doona C J, Doumbouya S I. J. Phys. Chem., 1994, 98: 513.
[92]
Szalai I, De Kepper P. J. Phys. Chem. A, 2008, 112: 783.
[93]
Szalai I, De Kepper P. Chaos, 2008, 18: 026105.
[94]
Orbán M, Epstein I R. J. Am. Chem. Soc., 1985, 107: 2302.
[95]
Rábai G, Orbán M, Epstein I R. J. Phys. Chem., 1992, 96: 5414.
[96]
Orbán M, Epstein I R. J. Am. Chem. Soc., 1987, 109: 101.
[97]
Rábai G, Epstein I R. J. Am. Chem. Soc., 1992, 114: 1529.
[98]
Alamgir M, Epstein I R. Int. J. Chem. Kinet., 1985, 17: 429.
[99]
Gao Q, Wang J. Chem. Phys. Lett., 2004, 391: 349.
[100]
Doona C J, Blittersdorf R, Schneider F W. J. Phys. Chem., 1993, 97: 7258.
[101]
Simoyi R H, Noyes R M. J. Phys. Chem., 1987, 91: 2689.
[102]
Simoyi R H. J. Phys. Chem., 1986, 90: 2802.
[103]
Ouyang Q, De Kepper P. J. Phys. Chem., 1987, 91: 6040.
[104]
Orbán M, Epstein I R. J. Am. Chem. Soc., 1989, 111: 2891.
[105]
Orbán M, Epstein I R. J. Am. Chem. Soc., 1990, 112: 1812.
[106]
Rábai G, Beck M T, Kustin K, Epstein I R. J. Phys. Chem., 1989, 93: 2853.
[107]
Yuan L, Gao Q, Zhao Y, Tang X, Epstein I R. J. Phys. Chem. A, 2010, 114: 7014.
[108]
Varga D, Horváth A K, Nagypál I. J. Phys. Chem. B, 2006, 110: 2467.
[109]
Horváth A K, Nagypál I. Int. J. Chem. Kinet., 2000, 32: 395.
[110]
Varga D, Horváth A K. J. Phys. Chem. A, 2009, 113: 13907.
[111]
Horváth A K, Nagypál I. J. Phys. Chem. A, 1998, 102: 7267.
[112]
Horváth A K, Nagypál I, Epstein I R. J. Phys. Chem. A, 2003, 107: 10063.
[113]
Horváth A K, Nagypál I, Peintler G, Epstein I R. J. Am. Chem. Soc., 2004, 126: 6246.
[114]
Cseko G, Horváth A K. J. Phys. Chem. A, 2012, 116: 2911.
[115]
Varga D, Horváth A K. Inorg. Chem., 2007, 46: 7654.
[116]
Xu L, Horváth A K, Hu Y, Ji C, Zhao Y, Gao Q. J. Phys. Chem. A, 2011, 115: 1853.
[117]
Pan C, Wang W, Horváth A K, Xie J, Lu Y, Wang Z, Ji C, Gao Q. Inorg. Chem., 2011, 50: 9670.
[118]
Rábai G. ACH-Models Chem., 1998, 135: 381.
[119]
Rábai G, Nagy Z V, Beck M T. React. Kinet. Catal. Lett., 1987, 33: 23.
[120]
Liu H, Xie J, Yuan L, Gao Q. J. Phys. Chem. A, 2009, 113: 11295.
[121]
Liu H, Horváth A K, Zhao Y, Lv X, Yang L, Gao Q. Phys. Chem. Chem. Phys., 2012, 14: 1502.
[122]
Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 7268.
[123]
Burger M, Field R J. Nature, 1984, 307: 720.
[124]
Resch P, Field R J, Schneider F W. J. Phys. Chem., 1989, 93: 2783.
[125]
Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 15454.
[126]
Rábai G, Hanazaki I. J. Phys. Chem., 1996, 100: 10615.
[127]
Rábai G. J. Phys. Chem. A, 1997, 101: 7085.
[128]
Chie K, Okazaki N, Tanimoto Y, Hanazaki I. Chem. Phys. Lett., 2001, 334: 55.
[129]
Edblom E C, Orbán M, Epstein I R. J. Am. Chem. Soc., 1986, 108: 2826.
[130]
Gaspar V, Showalter K. J. Am. Chem. Soc., 1987, 109: 4869.
[131]
Rábai G, Hanazaki I. J. Am. Chem. Soc., 1997, 119: 1458.
[132]
Okazaki N, Rábai G, Hanazaki I. J. Phys. Chem. A, 1999, 103: 10915.
[133]
Rábai G, Orban M. J. Phys. Chem., 1993, 97: 5935.
[134]
Turing A M. Phil. Trans. R. Soc. B, 1952, 237: 37.
[135]
Castets V, Dulos E, Boissonade J, De Kepper P. Phys. Rev. Lett., 1990, 64: 2953.
[136]
Pojman J A, Epstein I R. J. Phys. Chem., 1990, 94: 4966.
[137]
Nagypál I, Bazsa G, Epstein I R. J. Am. Chem. Soc., 1986, 108: 3635.
[138]
Zhivonitko V V, Koptyug I V, Sagdeev R Z. J. Phys. Chem. A, 2007, 111: 4122.
[139]
Chinake C R, Simoyi R H. J. Phys. Chem., 1994, 98: 4012.
[140]
Tóth á, Lagzi I, Horváth D. J. Phys. Chem., 1996, 100: 14837.
[141]
Tóth á, Horváth D, Siska A. J. Chem. Soc. Faraday Trans., 1997, 93: 73.
[142]
Gérard T, Tóth T, Grosfils P, Horváth D, De Wit A, Tóth A. Phys. Rev. E, 2012, 86.
[143]
Schuszter G, Tóth T, Horváth D, Tóth á. Phys. Rev. E, 2009, 79: 016216.
[144]
Boissonade J, Dulos E, Gauffre F, Kuperman M N, de Kepper P. Faraday Discussions, 2002, 120: 353.
[145]
Boissonade J, de Kepper P, Gauffre F, Szalai I. Chaos, 2006, 16: 037110.
[146]
Fuentes M, Kuperman M N, Boissonade J, Dulos E, Gauffre F, De Kepper P. Phys. Rev. E, 2002, 66: 056205.
[147]
Strier D, Boissonade J. Phys. Rev. E, 2004, 70: 016210.
[148]
Nagy I P, Keresztessy A, Pojman J A. J. Phys. Chem., 1995, 99: 5385.
[149]
Szalai I, De Kepper P. Phys. Chem. Chem. Phys., 2006, 8: 1105.
[150]
Lee G, Ouyang Q, Swinney H L. J. Chem. Phys., 1996, 105: 10830.
[151]
Ouyang Q, Noszticzius Z, Swinney H L. J. Phys. Chem., 1992, 96: 6773.
[152]
Rudovics B, Dulos E, De Kepper P. Physi. Scr., 1996, T67: 43.
[153]
Dulos E, Davies P, Rudovics B, De Kepper P. Physica D, 1996, 98: 53.
[154]
Berenstein I, Yang L, Dolnik M, Zhabotinsky A, Epstein I R. Phys. Rev. Lett., 2003, 91: 058302.
[155]
Míguez D, Pérez-Villar V, Muuzuri A. Phys. Rev. E, 2005, 71: 066217.
[156]
Horváth J, Szalai I, de Kepper P. Physica D, 2010, 239: 776.
[157]
Szalai I, Horváth J, Takacs N, de Kepper P. Phys. Chem. Chem. Phys., 2011, 13: 20228.
[158]
Szalai I, Cuinas D, Takacs N, Horváth J, De Kepper P. Interface Focus, 2012, 2: 417.
[159]
Pearson J E. Science, 1993, 261: 189.
[160]
Glass L, Mackey M C. From Clocks to Chaos: The Rhythms of Life. Princeton University Press, 1988.
[161]
Goldbeter A, Keizer J. Phys. Today, 1998, 51: 86.
[162]
Varga I, Szalai I, Meszaros R, Gilanyi T. J. Phys. Chem. B, 2006, 110: 20297.
[163]
Giannos S A, Dinh S M, Berner B. J. Pharm. Sci., 1995, 84: 539.
[164]
Ohmori T, Yu W, Yamamoto T, Endo A, Nakaiwa M, Amemiya T, Yamaguchi T. Chem. Phys. Lett., 2005, 407: 48.
[165]
Liedl T, Simmel F C. Nano Lett., 2005, 5: 1894.
[166]
Liedl T, Sobey T L, Simmel F C. Nano Today, 2007, 2: 36.
[167]
Goodwin B C. Adv. Enzyme Regul., 1965, 3: 425.
[168]
Yoshida Y, Tsuchiya R, Matsumoto N, Morita M, Miyakawa H, Kudo Y. J. Pharmacol Sci., 2005, 97: 212.
[169]
Mahowald M W, Schenck C H. Nature, 2005, 437: 1279.
[170]
Vanag V K. J. Phys. Chem. A, 1998, 102: 601.
[171]
Misra G. J. Controlled Release, 2002, 79: 293.
[172]
Horváth V, Kurin-Csrgei K, Epstein I R, Orbán M. J. Phys. Chem. A, 2008, 112: 4271.
[173]
Kovács K, Leda M, Vanag V K, Epstein I R. J. Phys. Chem. A, 2009, 113: 146.
[174]
Kuksenok O, Yashin V V, Balazs A C. Soft Matter, 2007, 3: 1138.
[175]
Ghosh P, Spiro T G. J. Am. Chem. Soc., 1980, 102: 5543.
[176]
Yoshida R. Ichijo H, Hakuta T, Yamaguchi T. Macr. Rapid Commun., 1995, 16: 305.
[177]
Rábai G. Phys. Chem. Chem. Phys., 2011, 13: 13604.