全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

混晶TiO2光催化剂的制备及机理研究

DOI: 10.7536/PC140124, PP. 1120-1131

Keywords: TiO2,混晶,混晶比,光催化机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文总结了混晶TiO2光催化剂的各种制备方法,并将其分为两大类一类是原位生成混晶,如水热法、溶剂热法、溶胶-凝胶法、微乳液-水热联用方法等;另一类是对两种晶型TiO2材料进行物理混合或对锐钛矿进行高温煅烧,如溶剂混合-煅烧法、高温煅烧法等。其中,后者操作简单易行、对设备要求不高,但获得的混晶TiO2易产生硬团聚,严重影响其光催化性能;在实际应用中前者制备的TiO2材料更具优势。同时,本文还对混晶TiO2光催化机理的研究历程进行了总结,并对其中存在的争议进行了评述。最后,展望了混晶TiO2光催化剂在环境和能源领域中的应用。

References

[1]  Jung K Y, Park S B, Jang H D. Catal. Commun., 2004, 5: 491.
[2]  Zhang L, Ding Q Q, Zhou Y. Cryst. Res. Technol., 2011, 46: 1202.
[3]  Wu J M, Song X M, Ma L Y, Wei X D. J. Cryst. Growth, 2011, 319: 57.
[4]  Shen X J, Tian B Z, Zhang J L. Catal. Today, 2013, 201: 151.
[5]  Li G H, Gray K A. Chem. Mater., 2007, 19: 1143.
[6]  Lei S, Duan W. J. Environ. Sci., 2008, 20: 1263.
[7]  Chan C K, Porter J F, Li Y G, Wei G, Chan C M. J. Am. Ceram. Soc., 1999, 82: 566.
[8]  Deák P, Aradi B, Frauenheim T. J. Phys. Chem. C, 2011, 115: 3443.
[9]  Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R A, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A. Nat. Mater., 2013, 7: 1.
[10]  Zhang Z B, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem. B, 1998, 102: 10871.
[11]  Ohno T, Sarukawa K, Tokieda K, Matsumura M. J. Catal., 2001, 203: 82.
[12]  Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. Angew. Chem. Int. Ed., 2002, 41: 2811.
[13]  Sun B, Vorontsov A V, Smirniotis P G. Langmuir, 2003, 19: 3151.
[14]  Li G, Chen L, Graham M E, Gray K A. J. Mol. Catal. A: Chem., 2007, 275: 30.
[15]  Wang C Y, Pagel R, Dohrmann J K, Bahnemann D W. C. R. Chim., 2006, 9: 761.
[16]  Fujishima A, Honda K. Nature, 1972, 238: 37.
[17]  Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16 (6): 697.
[18]  Habisreutinger S N, Mende L S, Stolarczyk J K. Angew. Chem. Int. Ed., 2013, 52: 7372.
[19]  Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J. Am. Chem. Soc., 2012, 134: 13366.
[20]  Beuvier T, Plouet M R, Granvalet M M L, Brousse T, Crosnier O, Brohan L. Inorg. Chem., 2010, 49: 8457.
[21]  Xin X K, Scheiner M, Ye M D, Lin Z Q. Langmuir, 2011, 27: 14594.
[22]  Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. ACS Nano, 2007, 1 (4): 273.
[23]  Sinha A K, Jana S, Pande S, Sarkar S, Pradhan M, Basu M, Saha S, Pal A, Pal T. CrystEngComm, 2009, 11: 1210.
[24]  Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J. Phys. Chem. C, 2007, 111: 2709.
[25]  Li Y J, Yan X, Yan W F, Lai X Y, Li N, Chi Y, Wei Y J, Li X T. Chem. Eng. J., 2013, 232: 356.
[26]  Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gr?tzel M. J. Am. Chem. Soc., 2012, 134: 17396.
[27]  Guo W X, Xu C, Wang X, Wang S H, Pan C F, Lin C J, Wang Z L. J. Am. Chem. Soc., 2012, 134: 4437.
[28]  Chen C Q, Li P, Wang G Z, Yu Y, Duan F F, Chen C Y, Song W G, Qin Y, Knez M. Angew. Chem. Int. Ed., 2013, 52: 9196.
[29]  Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B. J. Am. Chem. Soc., 2012, 134: 3659.
[30]  Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24: 2310.
[31]  Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[32]  Zhang C N, Huang Y, Chen S H, Tian H J, Mo L, Hu L H, Huo Z P, Kong F T, Ma Y W, Dai S Y. J. Phys. Chem. C, 2012, 116: 19807.
[33]  Bae E G, Kim H, Hwang Y H, Sohn K S, Pyo M. J. Mater. Chem., 2012, 22: 551.
[34]  Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chena H B, Lin C J. Electrochim. Acta, 2010, 55: 7211.
[35]  Ismail A A. Micropor. Mesopor. Mater., 2012, 149: 69.
[36]  Charanpahari A, Umarea S S, Gokhaleb S P, Sudarsan V, Sreedhar B, Sasikala R. Appl. Catal. A: Gen., 2012, 443/444: 96.
[37]  Zhang Z H, Yuan Y, Liang L H, Cheng Y X, Shi G Y, Jin L T. J. Hazard. Mater., 2008, 158: 517.
[38]  Yang M, Men Y, Li S L, Chen G W. Appl. Catal. A: Gen., 2012, 433/434: 26.
[39]  Puddu V, Choi H, Dionysiou D D, Puma G L. Appl. Catal. B: Environ., 2010, 94: 211.
[40]  Zheng R B, Meng X W, Tang F Q. Appl. Surf. Sci., 2009, 255: 5989.
[41]  Deng Q X, Wei M D, Ding X K, Jiang L L, Ye B H, Wei K M. Catal. Commun., 2008, 3657.
[42]  Lin H F, Li L P, Zhao M L, Huang X S, Chen X M, Li G S, Yu R C. J. Am. Chem. Soc., 2012, 134(20): 8328.
[43]  刘守新(Liu S X), 刘鸿(Liu H). 光催化及光电催化基础与应用(Foundation and Application of Photocatalysis and Photoelectrocatalysis). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2006. 44.
[44]  Khataee A R, Kasiri M B. J. Mol. Catal. A: Chem., 2010, 328: 8.
[45]  Hu K, Robson K C D, Johansson P G, Berlinguette C P, Meyer G J. J. Am. Chem. Soc., 2012, 134: 8352.
[46]  Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K, Lee W I. Adv. Mater., 2009, 21: 3668.
[47]  Liu S S, Li Q, Hou C C, Feng X D, Guan Z S. J. Alloys Compd., 2013, 575: 128.
[48]  Zhu S L, Xie G Q, Yang X J, Cui Z D. Mater. Res. Bull., 2013, 48: 1961.
[49]  Cheng Q Q, Cao Y, Yang L, Zhang P P, Wang K, Wang H J. Mater. Res. Bull., 2011, 46: 372.
[50]  Wei J P, Yao J F, Zhang X Y, Zhu W, Wang H T, Rhodes M J. Mater. Lett., 2007, 61: 4610.
[51]  Hu Y H. Angew. Chem. Int. Ed., 2012, 51: 12410.
[52]  Oh J K, Lee J K, Kim H S, Han S B, Park K W. Chem. Mater., 2010, 22: 1114.
[53]  Ye M D, Liu H Y, Lin C J, Lin Z Q. Small, 2013, 9(2): 312.
[54]  Si P, Ding S J, Yuan J, Lou X W, Kim D H. ACS Nano, 2011, 5 (9): 7617.
[55]  Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[56]  So S, Lee K, Schmuki P. J. Am. Chem. Soc., 2012, 134: 11316.
[57]  Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134: 11276.
[58]  Zuo F, Bozhilov K, Dillon R J, Wang L, Smith P, Zhao X, Bardeen C, Feng P Y. Angew. Chem. Int. Ed., 2012, 51: 6223.
[59]  Cai M L, Pan X, Liu W Q, Sheng J, Fang X Q, Zhang C N, Huo Z P, Tian H J, Xiao S F, Dai S Y. J. Mater. Chem. A, 2013, 1: 4885.
[60]  Lianga M S, Khaw C C, Liu C C, Chin S P, Wang J, Li H. Ceram. Int., 2013, 39: 1519.
[61]  Kim H, Hwanga Y H, Cho G, Kim D, Lim N, Pyo M. Electrochim. Acta, 2011, 56: 9476.
[62]  Chen Y, Tang Y H, Luo S L, Liu C B, Li Y. J. Alloys Compd., 2013, 578: 242.
[63]  Selvam K, Swaminathan M. Catal. Commun., 2011, 12: 389.
[64]  Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2010, 100: 84.
[65]  Feng C X, Wang Y, Zhang J W, Yu L G, Li D L, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2012, 113/114: 61.
[66]  Tian B Z, Li C Z, Gu F, Jiang H B. Catal. Commun., 2009, 10: 925.
[67]  Zhang P, Shao C L, Li X H, Zhang M Y, Zhang X, Sun Y Y, Liu Y C. J. Hazard. Mater., 2012, 237/238: 331.
[68]  Sohn J R, Lim J S. Catal. Lett., 2006, 108: 1.
[69]  Su R, Bechstein R, S L, Vang R T, Sillassen M, Esbj?rnsson B, Palmqvist A, Besenbacher F. J. Phys. Chem. C, 2011, 115: 24287.
[70]  Bojinova A, Kralchevska R, Poulios I, Dushkin C. Mater. Chem. Phys., 2007, 106: 187.
[71]  Harum D, Agrios A, Gray K, Rajh T, Thurnauer M. J. Phys. Chem. B, 2003, 107: 4545.
[72]  Scotti R, Bellobono I R, Canevali C, Cannas C, Catti M, D'Arienzo M, Musinu A, Polizzi S, Sommariva M, Testino A, Morazzoni F. Chem. Mater., 2008, 20: 4051.
[73]  Jiao Y C, Chen F, Zhao B, Yang H Y, Zhang J L. Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 402: 66.
[74]  Paola A D, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L. Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 317: 366.
[75]  Li W, Liu C, Zhou Y X, Bai Y, Feng X, Yang Z H, Lu L H, Lu X H, Chan K Y. J. Phys. Chem. C, 2008, 112: 20539.
[76]  Zhang H Z, Banfield J F. J. Phys. Chem. B, 2000, 104: 3481.
[77]  Tay Q L, Liu X F, Tang Y X, Jiang Z L, Sum T C, Chen Z. J. Phys. Chem. C, 2013, 117: 14973.
[78]  Yin H B, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S. J. Mater. Chem., 2001, 11: 1694.
[79]  Ng J W, Wang X P, Sun D D. Appl. Catal. B: Environ., 2011, 110: 260.
[80]  Ovenstone J, Yanagisawa K. Chem. Mater., 1999, 11: 2770.
[81]  Li G H, Ciston S, Saponjic Z V, Chen L, Dimitrijevic N M, Rajh T, Gray K A. J. Catal., 2008, 253: 105.
[82]  Fehsea M, Fischer F, Tessier C, Stievano L, Monconduit L. J. Power Sources, 2013, 231: 23.
[83]  Zhang Y Y, Chen J Z, Li X J. Catal. Lett., 2010, 139: 129.
[84]  Yan M C, Chen F, Zhang J L, Anpo M. J. Phys. Chem. B, 2005, 109: 8673.
[85]  Shen X J, Zhang J L, Tian B Z. J. Hazard. Mater., 2011, 192: 651.
[86]  Zachariah A, Baiju K V, Shukla S, Deepa K S, James J, Warrier K G K. J. Phys. Chem. C, 2008, 112: 11345.
[87]  Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A. Langmuir, 2007, 23: 10916.
[88]  Nair R G, Paul S, Samdarshi S K. Sol. Energy Mater. Sol. Cells, 2011, 95: 1901.
[89]  Gouma P I, Mills M J. J. Am. Ceram. Soc., 2001, 84: 619.
[90]  Zhang J, Li M J, Feng Z C, Chen J, Li C. J. Phys. Chem. B, 2006, 110: 927.
[91]  温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21:2285.
[92]  Hsu Y C, Lin H C, Chen C H, Liao Y T, Yang C M. J. Solid State Chem., 2010, 183: 1917.
[93]  Bickley R I, Gonzalezcarreno T, Lees J S, Palmisano L, Tilley R J D. J. Solid State Chem., 1991, 92: 178.
[94]  Deskins N A, Kerisit S, Rosso K M, Dupuis M. J. Phys. Chem. C, 2007, 111: 9290.
[95]  Datye A K, Riegel G, Bolton J R, Huang M, Prairie M R. J. Solid State Chem., 1995, 115: 236.
[96]  Li G H, Gray K A. Chem. Phys., 2007, 339: 173.
[97]  Sun B, Smirniotis P G. Catal. Today, 2003, 88: 49.
[98]  Liu B T, Peng L L. J. Alloys Compd., 2013, 571: 145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133