OALib Journal期刊
ISSN: 2333-9721
费用:99美元
颗粒物质混合行为的离散单元法研究
DOI: 10.7536/PC140502 , PP. 113-124
Keywords: 离散单元法 ,混合机理 ,黏结性颗粒 ,非球形颗粒 ,大规模模拟
Abstract:
颗粒物质的混合是化学工业生产的重要单元操作,由于颗粒物质运动行为的复杂性,工业混合器中的颗粒运动规律及物理机制至今仍未被全面认识。作为一种精细的数值方法,离散单元法(discreteelementmethod,DEM)在单颗粒尺度上描述颗粒物质的受力与运动行为,因此在研究混合机理方面具有独特优势。随着DEM模型与计算技术的快速发展,DEM已被广泛应用于各种混合过程的研究。通过DEM可以全面考察不同的颗粒性质、混合器类型以及操作条件等因素对混合机理的影响,从而对于指导粉体工业的生产操作及设备优化改进具有重要意义。本文重点阐述了DEM在无黏颗粒、黏结性颗粒、非球形颗粒混合过程模拟以及大规模计算等方面的最新进展,并对未来发展进行了展望。
References
[1] Jaeger H M, Nagel S R, Behringer R P. Rev. Mod. Phys., 1996, 68 (4): 1259.
[2] Aranson I S, Tsimring L S. Rev. Mod. Phys., 2006, 78 (2): 641.
[3] Bridgwater J. Particuology, 2012, 10 (4): 397.
[4] Ottino J M, Khakhar D V. Annu. Rev. Fluid Mech., 2000, 32: 55.
[5] Zhang J, Majmudar T S, Tordesillas A, Behringer R P. Granul. Matter, 2010, 12 (2): 159.
[6] Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G. Strain, 2007, 43: 193.
[7] Cundall P A, Strack O D L. Géotechnique, 1979, 29 (1): 47.
[8] Zhu H P, Zhou Z Y, Yang R Y, Yu A B. Chem. Eng. Sci., 2007, 62 (13): 3378.
[9] 徐泳(Xu Y), 孙其诚(Sun Q C), 张凌(Zhang L),黄文彬(Huang W B). 力学进展(Advances in Mechanics), 2003, 33 (2): 251.
[10] 孙其诚(Sun Q C), 王光谦(Wang G Q). 力学进展(Advances in Mechanics), 2008, 38 (1): 87.
[11] 孙其诚(Sun Q C), 王光谦(Wang G Q). 颗粒物质力学导论(An Introduction to the Mechanics of Granular Materials). 北京: 科学出版社(Beijing: Science Press), 2009.
[12] Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V. Powder Technol., 2007, 171: 157.
[13] Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
[14] Mindlin R D, Deresiewicz H. J. Appl. Mech., 1953, 20: 327.
[15] Thornton C, Yin K K. Powder Technol., 1991, 65 (1): 153.
[16] Thornton C. Journal of Applied Mechanics, 1997, 64 (2): 383.
[17] Bertrand F, Leclaire L A, Levecque G. Chem. Eng. Sci., 2005: 60 (8): 2517.
[18] Walton O R, Braun R L. J. Rheol., 1986, 30 (5): 949.
[19] Tsuji Y, Tanaka T, Ishida T. Powder Technol., 1992, 71 (3): 239.
[20] Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B. Physica A, 1999, 269: 536.
[21] Yang R Y, Zou R P, Yu A B. Phys. Rev. E, 2000, 62: 3900.
[22] Manickam S S, Shah R, Tomei J, Bergman T L, Chaudhuri B. Powder Technol., 2010, 201 (1): 83.
[23] Romanski F S, Dubey A, Chester A W, Tomassone M S. Powder Technol., 2012, 221: 57.
[24] Seville J P K, Kuo H P, Knight P C, Parker D J, Tsuji Y, Adams M J. Chem. Eng. Sci., 2002, 57 (17): 3621.
[25] Lemieux M, Léonard G, Doucet J, Leclaire L A, Viens F, Chaouki J, Bertrand F. Powder Technol., 2008, 181 (2): 205.
[26] Sudah O S, Arratia P E, Alexander A, Muzzio F J. AICHE J., 2005, 51 (3): 836.
[27] Lemieux M, Bertrand F, Chaouki J, Gosselin P. Chem. Eng. Sci., 2007, 62 (6): 1783.
[28] Zhou Y C, Yu A B, Stewart R L, Bridgwater J. Chem. Eng. Sci., 2004, 59 (6): 1343.
[29] Chandratilleke G R, Zhou Y C, Yu A B, Bridgwater J. Ind. Eng. Chem. Res., 2010, 49 (11): 5467.
[30] Remy B, Glasser B J, Khinast J G. AICHE J., 2010, 56 (2): 336.
[31] Kaneko Y, Shiojima T, Horio M. Powder Technol., 2000, 108 (1): 55.
[32] Schutyser M A I, Briels W J, Rinzema A, Boom R M. Biotechnol. Bioeng., 2003, 84 (1): 29.
[33] Feng Y Q, Yu A B. Chem. Eng. Sci., 2007, 62 (1): 256.
[34] Ren B, Shao Y, Zhong W, Jin B, Yuan Z, Lu Y. Powder Technol., 2012, 222: 85.
[35] Cheng Y, Zhang W, Guan G, Fushimi C, Tsutsumi A, Wang C H. Powder Technol., 2014, 253: 722.
[36] Seiden G, Thomas P J. Adv. Phys., 2011, 83 (4): 1323.
[37] Arntz M M H D, den Otter W K, Briels W J, Bussmann P J T, Beeftink H H, Boom R M. AICHE J., 2008, 54 (12): 3133.
[38] Arratia P E, Duong N, Muzzio F J, Godbole P, Reynolds S. Powder Technol., 2006, 164 (1): 50.
[39] Ren X, Xu J, Qi H, Cui L, Ge W, Li J. Powder Technol., 2013, 239: 348.
[40] Dubey A, Vanarase A U, Muzzio F J. AICHE J., 2012, 58 (12): 3676.
[41] Marigo M, Cairns D L, Davies M, Ingram A, Stitt E H. Powder Technol., 2011, 212 (1): 17.
[42] Marigo M, Cairns D L, Davies M, Ingram A, Stitt E H. Powder Technol., 2012, 217: 540.
[43] Sinnott M, Cleary P W, Morrison R. Miner. Eng., 2006, 19 (15): 1537.
[44] Jayasundara C T, Yang R Y, Yu A B, Rubenstein J. Int. J. Miner. Process., 2010, 96 (1/4): 27.
[45] Yu A B, Bridgwater J, Burbidge A. Powder Technol., 1997, 92 (3): 185.
[46] Li S, Marshall J S, Liu G, Yao Q. Prog. Energy Combust. Sci., 2011, 37 (6): 633.
[47] Sarkar A, Wassgren C. Chem. Eng. Sci., 2010, 65 (21): 5687.
[48] Luding S. Powder Technol., 2005, 158 (1): 45.
[49] Deng X, Scicolone J V, Davé R N. Powder Technol., 2013, 243: 96.
[50] Limtrakul S, Rotjanavijit W, Vatanatham T. Chem. Eng. Sci., 2007, 62: 232.
[51] Wang S, Li X, Lu H, Liu G, Wang J, Xu P. Powder Technol., 2011, 207: 65.
[52] Aarons L R, Balachandar S, Horie Y. Powder Technol., 2013, 235: 18.
[53] Li H M, McCarthy J J. Phys. Rev. Lett., 2003, 90 (18): 184301.
[54] Zhu R R, Zhu W B, Xing L C, Sun Q Q. Powder Technol., 2011, 210 (1): 73.
[55] He Y, Peng W, Wang T, Yan S. Math. Probl. Eng., 2014: 316568.
[56] Di Renzo A, Cello F, Di Maio F P. Chem. Eng. Sci., 2011, 66: 2945.
[57] Wang S, Sun Z, Li X, Gao J, Lan X, Dong Q. Powder Technol., 2013, 237: 314.
[58] Viduka S M, Feng Y Q, Hapgood K, Schwarz M P. Int. J. Miner. Process., 2013, 123: 108.
[59] Mukherjee A K, Mishra B K. Int. J. Miner. Process., 2007, 82: 211.
[60] Xia Y K, Peng F F. Miner. Eng., 2007, 20: 113.
[61] Gladkyy A, Schwarze R. Granul. Matter, 2014, 16(6): 911.
[62] 周光正(Zhou G Z), 葛蔚(Ge W).化工学报(CIESC Journal), 2014, 65 (4): 1145.
[63] Zhou G, Ge W, Li B, Li X, Wang P, Wang J, Li J. Microfluid. Nanofluid., 2013, 15 (4): 481.
[64] D?iugys A, Peters B. Granul. Matter, 2001, 3 (4): 231.
[65] Ketterhagen W R, Ende M T A, Hancock B C. J. Pharm. Sci., 2009, 98 (2): 442.
[66] Pena A A, Garcia-Rojo R, Herrmann H J. Granul. Matter, 2007, 9 (3/4): 279.
[67] H?hner D, Wirtz S, Scherer V. Powder Technol., 2013, 235: 614.
[68] H?hner D, Wirtz S, Scherer V. Powder Technol., 2014, 253: 256.
[69] Kodam M, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2012, 69 (1): 587.
[70] Cleary P W. Eng. Comput., 2004, 21 (2/3/4): 169.
[71] Cleary P W. Powder Technol., 2000, 109 (1/3): 83.
[72] Cleary P W. Powder Technol., 2013, 248: 103.
[73] Geng F, Yuan Z, Yan Y, Luo D, Wang H, Li B, Xu D. Powder Technol., 2009, 193 (1): 50.
[74] Geng F, Wang Y, Li Y, Yuan L, Wang X, Liu M, Yuan Z. Particuology, 2013, 11 (5): 594.
[75] Hua X, Curtis J, Hancock B, Ketterhagen W, Wassgren C. Chem. Eng. Sci., 2013, 101: 144.
[76] 赵啦啦(Zhao L L), 刘初升(Liu C S), 闫俊霞(Yan J X), 徐志鹏(Xu Z P). 物理学报(Acta Physica Sinica), 2010, 59 (3): 1870.
[77] Markauskas D, Ka D?ianauskas R, Diugys A, Navakas R. Granul. Matter, 2010, 12 (1): 107.
[78] Yu Y, Saxén H. Powder Technol., 2014, 262: 233.
[79] Ketterhagen W R. Int. J. Pharm., 2011, 409: 137.
[80] Kruggel-Emden H, Ka D?ianauskas R. Chem. Eng. Sci., 2013, 92: 105.
[81] Ren B, Zhong W, Jin B, Shao Y, Yuan Z. Powder Technol., 2013, 234: 58.
[82] Oschmann T, Hold J, Kruggel-Emden H. Powder Technol., 2014, 258: 304.
[83] Chung Y C, Liao H H, Hsiau S S. Powder Technol., 2013, 237: 53.
[84] Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V. Powder Technol., 2008, 188 (2): 153.
[85] H?hner D, Wirtz S, Kruggel-Emden H, Scherer V. Powder Technol., 2011, 208 (3): 643.
[86] Williams K C, Chen W, Weeger S, Donohue T J. Particuology, 2014, 12: 80.
[87] Cleary P W. Particuology, 2010, 8 (2): 106.
[88] 狄少丞(Di S C), 季顺迎(Ji S Y). 力学学报(Chinese Journal of Theoretical and Applied Mechanics), 2014, 46 (4): 561.
[89] NVIDIA. NVIDIA CUDA C Programming Guide Version 3.1. Santa Clara, CA, 2010.
[90] Longmore J P, Marais P, Kuttel M M. Powder Technol., 2013, 235: 983.
[91] Zhang L, Quigley S F, Chan A H C. Adv. Eng. Softw., 2013, 60: 70.
[92] Govender N, Wilke D N, Kok S, Els R. Comput. Appl. Math., 2014, 270: 386.
[93] Lu L, Gu Z, Lei K, Wang S, Kase K. Particuology, 2010, 8 (2): 127.
[94] Raschdorf S, Kolonko M. Int. J. Numer. Methods Eng., 2011, 85 (5): 625.
[95] He K, Dong S, Zhou Z. Phys. Rev. E, 2007, 75 (3): 036710.
[96] Ogarko V, Luding S. Comput. Phys. Commun., 2012, 183 (4): 931.
[97] Zhang J, Behringer R P, Goldhirsch I. Prog. Theor. Phys. Suppl., 2010, 184: 16.
[98] Sakai M, Yamada Y, Shigeto Y, Shibata K, Kawasaki V M, Koshizuka S. Int. J. Numer. Meth. Fluids, 2010, 64: 1319.
[99] Miehe C, Dettmar J, Z?h D. Int. J. Numer. Methods Eng., 2010, 83 (8/9): 1206.
[100] Andrade J E, Avila C F, Hall S A, Lenoir N, Viggiani G. J. Mech. Phys. Solids, 2011, 59 (2): 237.
[101] Nitka M, Combe G, Dascalu C, Desrues J. Granul. Matter, 2011, 13 (3): 277.
[102] Kozicki J, Donzé F V. Comput. Meth. Appl. Mech. Eng., 2008, 197 (49): 4429.
[103] Kloss C, Goniva C, Hager A, Amberger S, Pirker S. Prog. Comput. Fluid Dyn., 2012, 12 (2/3): 140.
[104] Weatherley D, Hancock W, Boros V, Abe S. ESyS-Particle Tutorial and User's Guide Version 2.3, 2014.
[105] Campbell C S. Powder Technol., 2006, 162 (3): 208.
[106] Iwashita K, Oda M. J. Eng. Mech., 1998, 124: 285.
[107] Ai J, Chen J F, Rotter J M, Ooi J Y. Powder Technol., 2011, 206 (3): 269.
[108] Jiang M J, Yu H S, Harris D. Comput. Geotech., 2005, 32(5): 340.
[109] Li X, Chu X, Feng Y T. Eng. Comput., 2005, 22(8): 894.
[110] Tordesillas A, Walsh D C. Powder Technol., 2002, 124 (1): 106.
[111] Di Renzo A, Di Maio F P. Chem. Eng. Sci., 2004, 59: 525.
[112] Ji S, Shen H H. J. Eng. Mech., 2006, 132 (11): 1252.
[113] Yang R Y, Zou R P, Yu A B. Powder Technol., 2003, 130 (1): 138.
[114] Xu Y, Xu C, Zhou Z, Du J, Hu D. Particuology, 2010, 8 (2): 141.
[115] Jiang M, Zhao Y, Liu G, Zheng J. Particuology, 2011, 9 (3): 270.
[116] Moakher M, Shinbrot T, Muzzio F J. Powder Technol., 2000, 109 (1/3): 58.
[117] Visser J. Powder Technol., 1989, 58 (1): 1.
[118] Johnson K L, Kendall K, Roberts A D. Proceedings of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences, 1971, 324: 301.
[119] Derjaguin B V, Muller V M, Toporov Y P. J. Colloid Interface Sci., 1975, 53: 314.
[120] Liu G, Li S, Yao Q. Powder Technol., 2011, 207 (1): 215.
[121] Pasha M, Hare C, Hassanpour A, Ghadiri M. Powder Technol., 2013, 233: 80.
[122] Iordanoff I, Fillot N, Berthier Y. Powder Technol., 2005, 159: 46.
[123] Chaudhuri B, Mehrotra A, Muzzio F J, Tomassone M S. Powder Technol., 2006, 165: 105.
[124] Gilabert F A, Roux J N, Castellanos A. Phys. Rev. E, 2007, 75 (1): 011303.
[125] Chandratilleke R, Yu A, Bridgwater J, Shinohara K. Ind. Eng. Chem. Res., 2014, 53: 4119.
[126] Mitarai N, Nori F. Adv. Phys., 2006, 55 (1/2): 1.
[127] Fisher R A. J. Agric. Sci., 1926, 16: 492.
[128] Lian G, Thornton C, Adams M J. J. Colloid Interface Sci., 1993, 161 (1): 138.
[129] Willett C D, Adams M J, Johnson S A, Seville J P K. Langmuir, 2000, 16 (24): 9396.
[130] Mikami T, Kamiya H, Horio M. Chem. Eng. Sci., 1998, 53: 1927.
[131] McCarthy J J. Powder Technol., 2003, 138 (1): 63.
[132] Liu P Y, Yang R Y, Yu A B. Phys. Fluids, 2013, 25 (6): 063301.
[133] Liu P Y, Yang R Y, Yu A B. Granul. Matter, 2013, 15 (4): 427.
[134] 高红利(Gao H L), 陈友川(Chen Y C), 赵永志(Zhao Y Z), 郑津洋(Zheng J Y). 物理学报(Acta Physica Sinica), 2012, 60 (12): 325.
[135] Radl S, Kalvoda E, Glasser B J, Khinast J G. Powder Technol., 2010, 200 (3): 171.
[136] Remy B, Khinast J G, Glasser B J. AICHE J., 2012, 58 (11): 3354.
[137] Hsiau S, Yang S. Chem. Eng. Sci., 2003, 58 (2): 339.
[138] Lian G, Thornton C, Adams M J. Chem. Eng. Sci., 1998, 53: 3381.
[139] Jain K, Shi D, McCarthy J J. Powder Technol., 2004, 146: 160.
[140] Favier J F, Abbaspour-Fard M H, Kremmer M, Raji A O. Eng. Comput., 1999, 16 (4): 467.
[141] Lin X, Ng T T. Int. J. Numer. Anal. Methods Geomech., 1995, 19 (9): 653.
[142] Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2010, 65 (22): 5852.
[143] Nezami E G, Hashash U M A, Zhao D, Ghaboussi J. Comput. Geotech., 2004, 31 (7): 575.
[144] Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2009, 64 (15): 3466.
[145] Latham J P, Munjiza A, Garcia X, Xiang J, Guises R. Miner. Eng., 2008, 21 (11): 797.
[146] Mio H, Higuchi R, Ishimaru W, Shimosaka A, Shirakawa Y, Hidaka J. Adv. Powder Technol., 2009, 20: 406.
[147] Alizadeh E, Bertrand F, Chaouki J. Comput. Chem. Eng., 2014, 64: 1.
[148] Cleary P W. Eng. Comput., 2009, 26 (6): 698.
[149] 多相复杂系统国家重点实验室(State Key Laboratory of Multiphase Complex Systems). 基于GPU的多尺度离散模拟并行计算(GPU-based Parallel Computations of Multiscale Discrete Systems). 北京: 科学出版社(Beijing: Science Press), 2009.
[150] Radeke C A, Glasser B J, Khinast J G. Chem. Eng. Sci., 2010, 65 (24): 6435.
[151] Wang X, Ge W. Contemporary High Performance Computing: From Petascale Toward Exascale (Ed. Vetter J S). Boca Raton: CRC Press, 2013. 75.
[152] Xu J, Qi H, Fang X, Lu L, Ge W, Wang X, Ming X, Chen F, He X, Li J. Particuology, 2011, 9: 446.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133