全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

锂离子电池铌基氧化物负极材料

DOI: 10.7536/PC140932, PP. 297-309

Keywords: 锂离子电池,负极材料,铌基氧化物,嵌脱锂机理,电化学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂离子电池负极材料钛酸锂由于其高功率和优异的循环性能得到了广泛的研究,但是较低的比容量(175mAh/g)限制了其应用前景。与钛酸锂相比,铌基氧化物具有相似的嵌脱锂电位和更高的比容量,也展现出良好的倍率性能和循环性能,有望成为新型功率型负极材料。本文综述了多种铌基复合金属氧化物(Nb2O5,TiNb2O7,LiNb3O8等)的晶体结构、电化学性能和嵌脱锂机理,讨论了材料的组成、形貌和制备工艺等对其嵌脱锂性能的影响,并概述其作用机制。此外,本文还归纳总结了铌基材料嵌脱锂行为的共性,并比较了它们与钛酸锂的异同,对其作为高功率锂离子电池负极材料的研究趋势和发展前景进行了展望。

References

[1]  Li H, Wang Z, Chen L, Huang X. Adv. Mater., 2009, 21: 4593.
[2]  Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y S, Li H, Wang Z, Duan X,Chen L. Adv. Mater., 2012, 24: 3233.
[3]  Goodenough J B, Han J T. US 8647773. 2014.
[4]  Tang K, Mu X, van Aken P A, Yu Y, Maier J. Adv. Energy Mater., 2013, 3: 49.
[5]  Lu X, Jian Z, Fang Z, Gu L, Hu Y S, Chen W, Wang Z, Chen L. Energy Environ. Sci., 2011, 4: 2638.
[6]  Pralong V, Reddy M A, Caignaert V, Malo S, Lebedev O, Varadaraju U, Raveau B. Chem. Mater., 2011, 23: 1915.
[7]  Cui H, Dwight K, Soled S, Wold A. J. Solid State Chem., 1995, 115: 187.
[8]  Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T. ACS Catal., 2011, 1: 1150.
[9]  Viet A L, Reddy M, Jose R, Chowdari B, Ramakrishna S. J. Phys. Chem. C, 2009, 114: 664.
[10]  Gatehouse B, Wadsley A. Acta Crystallogr., 1964, 17: 1545.
[11]  Kumagai N, Koishikawa Y, Komaba S, Koshiba N. J. Electrochem. Soc., 1999, 146: 3203.
[12]  Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N. J. Electrochem. Soc., 2006, 153: A583.
[13]  Tamura S, Kato K,Goto M. Z. Anorg. Allg. Chem., 1974, 410: 313.
[14]  Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J. Nature, 2000, 407: 496.
[15]  Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotech., 2007, 3: 31.
[16]  Wei M, Wei K, Ichihara M, Zhou H. Electrochem. Commun., 2008, 10: 980.
[17]  Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y. Nano Lett., 2010, 10: 4750.
[18]  Li B, Han C, He Y B, Yang C, Du H, Yang Q H, Kang F. Energy Environ. Sci., 2012, 5: 9595.
[19]  Zhang X F, Wang K X, Wei X, Chen J S. Chem. Mater., 2011, 23: 5290.
[20]  Hao Y J, Lai Q Y, Lu J Z, Ji X Y. Ionics, 2007, 13: 369.
[21]  Van der Ven A, Bhattacharya J, Belak A A. Acc. Chem. Res., 2012, 46: 1216.
[22]  Shen Y, Xiong T, Shang J, Yang K. Res. Chem. Intermediat, 2008, 34: 353.
[23]  Gasperin M. J. Solid State Chem., 1984, 53: 144.
[24]  Cava R, Murphy D, Zahurak S. J. Electrochem. Soc., 1983, 130: 2345.
[25]  Cava R, Santoro A, Murphy D, Zahurak S, Roth R. J. Solid State Chem., 1982, 42: 251.
[26]  Inoue K, Suzuki S, Nagai M. J. Electroceram., 2010, 24: 110.
[27]  Gopaiakrishnan R, Viswanathan B, Ramakrishnan V, Kuriacose J. Mater. Chem. Phys., 1987, 18: 171.
[28]  Jayaraman S, Aravindan V, Kumar P S, Wong C L, Ramakrishna S, Madhavi S. ACS Appl. Mater. Interfaces, 2014, 6: 8660.
[29]  Aravindan V, Sundaramurthy J, Jain A, Kumar P S, Ling W C, Ramakrishna S, Srinivasan M P, Madhavi S. ChemSusChem, 2014, 7: 1858.
[30]  Fei L, Xu Y, Wu X, Li Y, Xie P, Deng S, Smirnov S, Luo H. Nanoscale, 2013, 5: 11102.
[31]  Li H, Zhou H. Chem. Commun., 2012, 48: 1201.
[32]  Li H, Liu X, Zhai T, Li D, Zhou H. Adv. Energy Mater., 2013, 3: 428.
[33]  Li G, Wang X, Chen Z, Ma X, Lu Y. Electrochim. Acta, 2013, 102: 351.
[34]  Li G, Wang X, Ma X. J. Mater. Chem. A, 2013, 1: 12409.
[35]  Tabero P. J. Therm. Anal. Calorim., 2007, 88: 269.
[36]  Murphy D, Greenblatt M, Cava R, Zahurak S. Solid State Ionics, 1981, 5: 327.
[37]  Zachau C B, West K, Jacobsen T, Skaarup S. Solid State Ionics, 1992, 53: 364.
[38]  Fuentes A F, Garza E B, Martine2-de la Cruz A, Torres-Martínez L M. Solid State Ionics, 1997, 93: 245.
[39]  Montemayor S M, Mendez A A, Martínez-de la Cruz A, Fuentes A F,Torres-Martínez L M. J. Mater. Chem., 1998, 8: 2777.
[40]  Yamada H, Hibino M, Kudo T. Solid State Ionics, 2001, 140: 249.
[41]  Saritha D, Pralong V, Varadaraju U, Raveau B. J. Solid State Chem., 2010, 183: 988.
[42]  Permér L, Lundberg M. J. Solid State Chem., 1989, 81: 21.
[43]  Tarascon J M, Armand M. Nature, 2001, 414: 359.
[44]  Fang W, Cheng X, Zuo P, Ma Y, Yin G. Electrochim. Acta, 2013, 93: 173.
[45]  Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[46]  Fang W, Zuo P, Ma Y, Cheng X, Liao L, Yin G. Electrochim. Acta, 2013, 94: 294.
[47]  Han J T, Huang Y H, Goodenough J B. Chem. Mater., 2011, 23: 2027.
[48]  Han J T, Liu D Q, Song S H, Kim Y, Goodenough J B. Chem. Mater., 2009, 21: 4753.
[49]  Han J T, Goodenough J B. Chem. Mater., 2011, 23: 3404.
[50]  Goodenough J B, Kim Y. J. Power Sources, 2011, 196: 6688.
[51]  Goodenough J B. Acc. Chem. Res., 2012, 46: 1053.
[52]  Li Y, Sun C, Goodenough J B. Chem. Mater., 2011, 23: 2292.
[53]  Jian Z, Lu X, Fang Z, Hu Y S, Zhou J, Chen W, Chen L. Electrochem. Commun., 2011, 13: 1127.
[54]  Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K. Mater. Res. Bull., 2012, 47: 2161.
[55]  Wu X, Miao J, Han W, Hu Y S, Chen D, Lee J S, Kim J, Chen L. Electrochem. Commun., 2012, 25: 39.
[56]  Saritha D, Varadaraju U. Mater. Res. Bull., 2013, 48: 2702.
[57]  Goodenough J B, Kim Y. Chem. Mater., 2009, 22: 587.
[58]  Yan C, Xue D. Adv. Mater., 2008, 20: 1055.
[59]  Kavan L, Kalbac M, Zukalová M, Exnar I, Lorenzen V, Nesper R, Graetzel M. Chem. Mater., 2004, 16: 477.
[60]  Kumagai N, Tanno K, Nakajima T, Watanabe N. Electrochim. Acta, 1983, 28: 17.
[61]  Luo H, Wei M, Wei K. Mater. Chem. Phys., 2010, 120: 6.
[62]  Kim J W, Augustyn V, Dunn B. Adv. Energy Mater., 2012, 2: 141.
[63]  Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abru?a H D, Simon P, Dunn B. Nat. Mater., 2013, 12: 518.
[64]  Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y. Adv. Energy Mater., 2011, 1: 1089.
[65]  Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T. Electrochim. Acta, 2010, 55: 5813.
[66]  Fan Q, Whittingham M S. Electrochem. Solid-State Lett., 2007, 10: A48.
[67]  Le Viet A, Reddy M, Jose R, Chowdari B, Ramakrishna S. Electrochim. Acta, 2011, 56: 1518.
[68]  Wen H, Liu Z, Wang J, Yang Q, Li Y, Yu J. Appl. Surf. Sci., 2011, 257: 10084.
[69]  Park G, Gunawardhana N, Lee C, Lee S M, Lee Y S, Yoshio M. J. Power Sources, 2013, 236: 145.
[70]  Kumagai N, Ishiyama I, Tanno K. J. Power Sources, 1987, 20: 193.
[71]  Zhang B, Du H, Li B, Kang F. Electrochem. Solid-State Lett., 2010, 13: A36.
[72]  Cai R, Jiang S, Yu X, Zhao B, Wang H, Shao Z. J. Mater. Chem., 2012, 22: 8013.
[73]  Thackeray M, De Kock A, Rossouw M, Liles D, Bittihn R, Hoge D. J. Electrochem. Soc., 1992, 139: 363.
[74]  Schoonman J, Tuller H, Kelder E. J. Power Sources, 1999, 81: 44.
[75]  Islam M S, Driscoll D J, Fisher C A, Slater P R. Chem. Mater., 2005, 17: 5085.
[76]  Li G, Wang X, Ma X. J. Energy Chem., 2013, 22: 357.
[77]  Yoo J E, Park J, Cha G, Choi J. Thin Solid Films, 2013, 531: 583.
[78]  Guo B, Yu X, Sun X G, Chi M, Qiao Z A, Liu J, Hu Y S, Yang X Q, Goodenough J B, Dai S. Energy Environ. Sci., 2014, 7: 2220.
[79]  Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Chem. Mater., 2014, 26: 3508.
[80]  Dominko R, Baudrin E, Umek P, Ar D? on D, Gaber? D? ek M, Jamnik J. Electrochem. Commun., 2006, 8: 673.
[81]  Dominko R, Dupont L, Gaber? D? ek M, Jamnik J, Baudrin E. J. Power Sources, 2007, 174: 1172.
[82]  Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. Chem. Mater., 2008, 20: 1534.
[83]  Colin J F, Pralong V, Caignaert V, Hervieu M, Raveau B. Inorg. Chem., 2006, 45: 7217.
[84]  Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. J. Mater. Chem., 2008, 18: 3121.
[85]  Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. J. Mater. Chem. A, 2014, 2: 17258.
[86]  Son J. Electrochem. Commun., 2004, 6: 990.
[87]  Kim C, Norberg N S, Alexander C T, Kostecki R, Cabana J. Adv. Funct. Mater., 2013, 23: 1214.
[88]  Fan Q, Lei L, Sun Y. Nanoscale, 2014, 6: 7188.
[89]  Fan Q, Lei L, Yin G, Sun Y. Chem. Commun., 2014, 50: 2370.
[90]  Xu H, Shu J, Hu X, Sun Y, Luo W, Huang Y. J. Mate. Chem. A, 2013, 1: 15053.
[91]  Kwak J E, Yun H, Chae H. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2005, 61: i132.
[92]  Lu Y, Goodenough J B, Dathar G K P, Henkelman G, Wu J, Stevenson K. Chem. Mater., 2011, 23: 3210.
[93]  Cho A, Son J, Aravindan V, Kim H, Kang K, Yoon W, Kim W, Lee Y. J. Mater. Chem., 2012, 22: 6556.
[94]  Reddy M A, Varadaraju U. Chem. Mater., 2008, 20: 4557.
[95]  Permér L, Lundberg M. J. Less Common Metals, 1989, 156: 145.
[96]  Bohnke C, Fourquet J, Randrianantoandro N, Brousse T, Crosnier O. J. Solid State Electrochem., 2001, 5: 1.
[97]  Reddy M V, Madhavi S, Subba Rao G V, Chowdari B V R. J. Power Sources, 2006, 162: 1312.
[98]  Patoux S, Dolle M, Rousse G, Masquelier C. J. Electrochem. Soc., 2002, 149: A391.
[99]  Drozhzhin O, Vorotyntsev M, Maduar S, Khasanova N, Abakumov A, Antipov E. Electrochim. Acta, 2013, 89: 262.
[100]  Reddy M A, Varadaraju U. J. Phys. Chem. C, 2011, 115: 25121.
[101]  Cava R, Santoro A, Murphy D, Zahurak S, Roth R. Solid State Ionics, 1981, 5: 323.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133