全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

车用质子交换膜燃料电池材料部件

DOI: 10.7536/PC140827, PP. 310-320

Keywords: 氢能,燃料电池汽车,催化剂,质子交换膜,扩散层,双极板

Full-Text   Cite this paper   Add to My Lib

Abstract:

车用燃料电池主要包括质子交换膜燃料电池、金属-空气燃料电池等,其中质子交换膜燃料电池是目前车用燃料电池的主要开发对象(以下简称车用燃料电池)。经过全球范围内近十年的持续研发,车用燃料电池在能量效率、功率密度与比功率、低温启动等功能特性方面已经取得了突破性进展,新一轮的燃料电池汽车产业化浪潮正在迫近。然而,车用燃料电池的耐久性和成本还没达到预期商业化目标,是其产业化的最后障碍。探索和研发燃料电池用新型关键材料部件是解决这两大问题、推进其商业化进程的关键所在,也是车用燃料电池长期的研究重点和热点。本文系统地梳理了近几年来车用燃料电池质子交换膜、催化层、气体扩散层、双板板关键材料部件的研究进展和成果,并分类进行了简要评述,分析了其性能与商业化目标的差距。最后展望了车用燃料电池关键材料部件今后的发展方向。

References

[1]  欧阳明高(Ouyang M G). 内燃机学报( Transactions of CSICE), 2008, 26: 107.
[2]  Sung W, Song Y, Yu K, Lim T. SAE Int. J. Engines, 2010, 3(1): 768.
[3]  Yokoyama T. California Air Resources Board ZEV Symposium, Sacramento CA, Sep., 2009. 21.
[4]  李建秋(Li J Q), 方川(Fang C), 徐梁飞(Xu L F). 汽车安全与节能学报(Journal of Automotive Safety and Energy), 2014, 5(1): 17.
[5]  Feng S G, Shang Y M, Liu G S, Dong W Q, Xie X F, Xu J M, Mathurb V K. Journal of Power Sources, 2010, 195: 6450.
[6]  Feng S G, Shang Y M, WangY Z, Xie X F, Mathurb V K, Xu J M. Journal of Power Sources, 2010, 195: 2541.
[7]  Feng S G, Shang Y M, Wang S B, Xie X F, WangY Z, Wang Y W, Xu J M. Journal of Membrane Science, 2010, 346: 105.
[8]  Mader J A, Benicewicz B C. Fuel Cells, 2011, 11(2): 222.
[9]  Qian W, Shang Y M, Fang M, Wang S B, Xie X F, Wang J H, Wang W X, Du J Y, Wang Y W, Mao Z Q. International Journal of Hydrogen Energy, 2012, 37: 12919.
[10]  Qian W, Shang Y M, Wang S B, Xie X F, Mao Z Q. International Journal of Hydrogen Energy, 2013, 38: 11053.
[11]  Makharia R, Kocha S S, Yu P T, Sweikart M A, Gu W, Wagner F T, Gasteiger H A. ECS Transactions, 2006, 1 (8): 3.
[12]  Lee K, Zhang J, Wang H, Wilkinson D P. J. Appl. Electrochem., 2006, 36(5): 507.
[13]  Antolini E, Gonzalez E R. Solid State Ionics, 2009, 180(9/10): 746.
[14]  Zhang P, Huang S Y, Popov B N. J. Electrochem. Soc., 2010, 157(8): B1163.
[15]  Seger B, Kongkanand A, Vinodgopal K, Kamat P V. J. Electroanal. Chem., 2008, 621: 198.
[16]  Antolini E, Gonzalez E R. Appl. Catal. B: Environ, 2010, 96: 245.
[17]  Debe M K. ECS Trans., 2012, 45 (2): 47.
[18]  Antolini E, Perez J. J. Mater. Sci., 2011, 46: 4435.
[19]  Ehteshami S M M, Chan S H. Electrochimica Acta, 2013, 93: 334.
[20]  Galeano C, Baldizzone C, Bongard H, Spliethoff B, Weidenthaler C, Meier J C, Mayrhofer K J J, Schüth F. Adv. Funct. Mater., 2014, 24: 220.
[21]  Zhang G, Shao Z G, Lu W T, Xie F, Xiao H, Qin X P, Yi B L. Applied Catalysis B: Environmental, 2013, 132/133: 183.
[22]  Choi R, Choi S, Choi C H, Nam K M, Woo S I, Park J T, Han S W. Chem. Eur. J., 2013, 19: 8190.
[23]  Wang S Y, Jiang S P, Xin W G, Guo J. Electrochimica Acta, 2011, 56: 1563.
[24]  Shimizu W, Okada K, Fujita Y, Zhao S S, Murakami Y. Journal of Power Sources, 2012, 205: 24.
[25]  He W, Jiang H J, Zhou Y, Yang S D, Xue X Z, Zou Z Q, Zhang X G, Akins D L, Yang H. Carbon, 2012, 50(1): 265.
[26]  Liao C S, Liao C T, Tso C Y, Shy H J. Mater. Chem. Phys., 2011, 130(1/2): 270.
[27]  Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chem. Mater., 2011, 23(11): 2772.
[28]  Paul R R K, Mulchandani A. J. Power Sources, 2013, 223: 23.
[29]  Qiu J D, Wang G C, Liang R P, Xia X H, Yu H W. J. Phys.Chem. C, 2011, 115(31): 15639.
[30]  Maiyalagan T, Dong X, Chen P, Wang X. J. Mater. Chem., 2012, 22: 5286.
[31]  Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C. Phys. Chem.Chem. Phys., 2011, 13: 4083.
[32]  Choi S M, Seo M H, Kim H J, Kim W B. Synth. Met., 2011, 161: 2405.
[33]  Hung T F, Wang B, Tsai C W, Tu M H, Wang G X, Liu R S, Tsai D P, Lo M Y, Shy D S, Xing X K. Int. J. Hydrogen Energy, 2012, 37(19): 14205.
[34]  Li Y J, Li Y J, Zhu E, McLouth T, Chiu C Y, Huang X Q, Huang Y. J. Am. Chem. Soc., 2012, 134(30): 12326.
[35]  Guo S J, Sun S H. J. Am. Chem. Soc., 2012, 134(5): 2492.
[36]  Rajalakshmi N, Lakshmi N, Dhathathreyan K S. International Journal of Hydrogen Energy, 2008, 33: 7521.
[37]  Ioroi T, Akita T, Asahi M, Yamazaki S I, Siroma Z, Fujiwara N, Yasuda K. Journal of Power Sources, 2013, 223: 183.
[38]  Kakinuma K, Chino Y J, Senoo Y C, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M. Electrochimica Acta, 2013, 110: 316.
[39]  Du C Y, Chen M, Cao X Y, Yin G P, Shi P F. Electrochemistry Communications, 2009, 11: 496.
[40]  Suzuki S, Onodera T, Kawaji J, Mizukami T, Morishima M, Yamaga K. Journal of Power Sources, 2013, 223: 79.
[41]  Yin S B, Mu S C, Lv H F, Cheng N C, Pan M, Fu Z Y. Applied Catalysis B: Environmental, 2010, 93: 233.
[42]  Dong B, Gwee L, Salas-de la Cruz D, Winey K I, Elabd Y A. Nano Letters, 2010. 10(9): 3785.
[43]  Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. J. Power Sources, 2009, 194: 146.
[44]  Arvay A, Yli-Rantala E, Liu C H, Peng X H, Koski P, Cindrella L, Kauranen P, Wilde P M, Kannan A M. J. Power Sources, 2012, 213: 317.
[45]  Park H. Energy Conversion and Management, 2014, 81: 220.
[46]  Cho J, Oh H, Park J, Min K, Lee E, Jyoung J. International Journal of Hydrogen Energy, 2014, 39: 495.
[47]  Burheim O S, Su H, Pasupathi S, Pharoah J G, Pollet B G. International Journal of Hydrogen Energy, 2013, 38: 8437.
[48]  Seo J H, Baik K D, Kim D K, Kim S, Choi J W, Kim M, Song H H, Kim M S. International Journal of Hydrogen Energy, 2013, 38: 16245.
[49]  Heinzel A, Mahlendorf F, Neimzig O, Kreuz C. J. Power Sources, 2004, 131: 35.
[50]  Wang H, Turner J A. Fuel Cells, 2010, 10(4): 510.
[51]  Wang H, Turner J A. J. Power Sources, 2004, 128: 193.
[52]  Wang H, Teeter G, Turner J A. J. Electrochem. Soc., 2005, 152: B99.
[53]  Wang H, Turner J A. ECS Transactions, 2006, 1: 263.
[54]  Jones D J. Global Change, Energy Issues and Regulation Policies. Netherlands: Springer, 2013: 161.
[55]  The Fuel Cell Technical Team. Fuel Cell Technical Team Roadmap, Washington: DOE, June 2013.
[56]  Matthew M. Polymer Electrolyte Fuel Cell Degradation. Dutch: Elsevier, 2011. 112.
[57]  Holmstr?m N, Wiezell K, Lindbergh G. J. Electro. Soc., 2012, 159 (8): F369.
[58]  Chen Y, Guo R L, Lee C H, Lee M, James E. McGrath. International Journal of Hydrogen Energy, 2012, 37: 6132.
[59]  Wang Z B, Tang H L, Li J R, Jin A P, Wang Z, Zhang H L, Pan M. International Journal of Hydrogen Energy, 2013, 38: 4725.
[60]  Jung M S, Kim T H, Yoon Y J, Kang C G, Yu D M, Lee J Y, Kim H J, Hong Y T. Journal of Membrane Science, 2014, 459:72.
[61]  Chen S W, Chen K C, Zhang X, Hara R, Endo N, Higa M, Okamoto K, Wang L J. Polymer, 2013, 54: 236.
[62]  Feng S G, Shang Y M, Wang Y W, Liu G S, Xie X F, Dong W Q, Xu J M, Mathurb V K. Journal of Membrane Science, 2010, 352: 14.
[63]  Zhou X W, Gan Y L, Du J J, Tian D N, Zhang R H, Yang C Y, Dai Z X. Journal of Power Sources, 2013, 232: 310.
[64]  Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K. Electrochimica Acta, 2010, 55: 4827.
[65]  Guo S J, Zhang S, Sun X L, Sun S H. J. Am. Chem. Soc., 2011, 133: 15354.
[66]  Bi Y P, Lu G X. Electrochemistry Communications, 2009, 11: 45.
[67]  Sun S H, Jaouen F, Dodelet J P. Adv. Mater., 2008, 20: 3900.
[68]  Zhou X J, Qiao J L, Yang L, Zhang J J. Adv. Energy Mater., 2014, 4(8): 1301523.
[69]  Kimmel Y, Yang L R, Kelly T G, Rykov S A, Chen J G. Journal of Catalysis, 2014, 312: 216.
[70]  Ou Y W, Cui X L, Zhang X Y, Jiang Z Y. Journal of Power Sources, 2010, 195: 1365.
[71]  Middelman E. Fuel Cells Bulletin, 2002, 2002(11): 9.
[72]  Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. Advanced Energy Materials, 2011, 1(6): 1205.
[73]  Debe M K, Hendricks S M, Vernstrom G D, Meyers M, Brostrom M, Stephens M, Chan Q, Willey J, Hamden M, Mittelsteadt C K, Capuano C B, Ayers K E, Anderson E B. Journal of the Electrochemical Society, 2012, 159(6): K165.
[74]  Bonnefont A, Ruvinskiy P, Rouhet M, Orfanidi A, Neophytides S, Savinova E. WIREs Energy Environ, 2014, 3: 505.
[75]  Pan C F, Wu H, Wang C, Wang B, Zhang L, Cheng Z D, Hu P, Pan W, Zhou Z Y, Yang X, Zhu J. Advanced Martials, 2008, 20(9): 1644.
[76]  Middleman E, Kout W, Vogelaar B, Lenssen J, de Waal E. J. Power Sources, 2003, 118: 44.
[77]  Cho E A, Jeon U S, Ha H Y, Hong S A, Oh I H. J. Power Sources, 2004, 125: 178.
[78]  Kuan H C, Ma C C M, Chen K H, Chen S M. J. Power Sources, 2004, 134: 7.
[79]  Hermann A, Chaudhuri T, Spagnol P. Int. J. Hydrogen Energy, 2005, 30: 1297.
[80]  Mehta V, Cooper J S. J. Power Sources, 2003, 114: 32.
[81]  Brett D J L, Brandon N P. J. Fuel Cell Sci. Technol., 2007, 4: 29.
[82]  Pozio A, Silva R F, De Francesco M, Giorgi L. Electrochim. Acta, 2003, 48: 1543.
[83]  Wang H, Sweikart M A, Turner J A. J. Power Sources, 2003, 115: 243.
[84]  Brady M P, Weisbrod K, Zawodzinski C, Paulauskas I, Buchanan R A, Walker L R. Electrochem. Solid State Lett., 2002, 5: A24.
[85]  Brady M P, Weisbrod K, Paulauskas I, Buchanan R A, More L, Wang H, Wilson M, Garzon F, Alker L R. Scripta Mater., 2004, 50: 1017.
[86]  Yang M J, Zhang D M. Energy, 2014, 64: 242.
[87]  刘峰(Liu F), 王诚(Wang C), 张剑波(Zhang J B), 兰爱东(Lan A D), 李建秋(Li J Q), 欧阳明高(Ouyang M G). 化学进展(Progress in Chemistry), 2014, 26(11): 1763.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133