全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

基于纳米材料的表面辅助激光解吸离子化质谱研究

DOI: 10.7536/PC141117, PP. 571-584

Keywords: 表面辅助激光解吸离子化质谱,碳纳米材料,硅纳米材料,纳米粒子,纳米杂化多孔材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

基质辅助激光解吸离子化质谱(MALDI-MS)作为一种常规的分析表征方法主要用于生物大分子的分析,如蛋白质、多肽、多糖及核酸等.然而,MALDI-MS中使用的有机小分子基质在低分子量区会产生背景干扰,很难分析小分子量化合物(m/z<700).最近,基于纳米材料的免有机基质的激光解吸离子化质谱(又称为表面辅助激光解吸离子化质谱,SALDI-MS)有效解决了上述问题.SALDI-MS分析中使用的起到能量转移作用的纳米材料在低分子量区间不会产生背景干扰峰,可以将分析对象由大分子扩展到小分子.另外,SALDI-MS还具有许多其他优点,如样品制备简单、信噪比高、耐盐性好、基底表面信号重复性好及可实现样品的定量分析等,显示了较好的应用前景.本文综述了研究较多的四大类纳米材料在SALDI-MS分析、检测及成像方面的应用,包括碳纳米材料(富勒烯、碳纳米管、石墨烯及氧化石墨烯)、硅纳米材料(多孔硅、硅纳米纤维、硅纳米粒子)、其他材料纳米粒子(包括金属纳米粒子、金属氧化物纳米粒子、无机盐纳米粒子及量子点等)及纳米杂化多孔材料,详细介绍了最近的一些研究进展;并讨论了纳米材料在SALDI-MS应用中的能量转移机理.最后,讨论了该领域未来的研究内容和方向以及亟待研究的重要问题.

References

[1]  Karas M, Hillenkamp F. Anal. Chem., 1988, 60: 2299.
[2]  Hillenkamp F, Peter-Katalinic J. Weinheim:Wiley-VCH, 2007, 1: 1.
[3]  Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Rapid Commun. Mass Spectrom., 1988, 2: 151.
[4]  Sunner J, Dratz E, Chen Y C. Anal. Chem., 1995, 67: 4335.
[5]  Wei J, Buriak J M, Siuzdak G. Nature, 1999, 399: 243.
[6]  Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[7]  Chiang C K, Chen W T, Chang H T. Chem. Soc. Rev., 2011, 40: 1269.
[8]  Peterson D S. Mass Spectrom. Rev., 2007, 26: 19.
[9]  Zhang J L, Li Z, Zhang C S, Feng B S, Zhou Z G, Bai Y, Liu H W. Anal. Chem., 2012, 84: 3296.
[10]  Rainer M, Najam-ul-Haq M, Huck C W, Vallant R M, Heigl N, Hahn H, Bakry R, Bonn G K, Recent Pat. Nanotechnol., 2007, 1: 113.
[11]  Bonn G K, Feuerstein I, Huck C W, Najam-ul-Haq M, Rainer M, Stecher G, Schwarzmann, G., Steinmüller-Nethl, D., Steinmüller D. WO 05096346, 2005.
[12]  Shiea J, Huang J P, Teng C F, Jeng J, Wang L Y, Chiang L Y. Anal. Chem., 2003, 75: 3587.
[13]  Xu S, Li Y, Zou H F, Qiz J,Guo Z, Guo B. Anal. Chem., 2003, 75: 6191.
[14]  Chen W Y, Wang L S, Chiu H T, Chen Y C, Lee C Y. J. Am. Chem. Soc.Mass Spectrom., 2004, 15: 1629.
[15]  Pan C S, Xu S Y, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 263.
[16]  Ren S F, Zhang L, Cheng Z H, Guo Y L. J. Am. Chem. Soc., 2005, 16: 333.
[17]  Pan C S, Xu S Y, Hu L G, Su X Y, Qu J J, Zou H F, Guo Z, Zhang Y, Guo B C. J. Am. Soc. Mass Spectrom., 2005, 16: 883.
[18]  Hu L, Xu S Y, Pan C S, Yuan C G, Zou H F, Jiang G B. Environ. Sci. Technol., 2005, 39: 8442.
[19]  Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.
[20]  Dong X L, Cheng J S, Li J H, Wang Y S. Anal. Chem., 2010, 82: 6208.
[21]  Lu M H, Lai Y Q, Chen G N, Cai Z W. Anal. Chem., 2011, 83: 3161.
[22]  Shi C Y, Meng J R, Deng C H. Chem. Commun., 2012, 48: 2418.
[23]  Kawasaki H, Nakai K, Arakawa R, Athanassiou E K, Grass R N, Stark W J. Anal. Chem., 2012, 84: 9268.
[24]  Gulbakan B, Yasun E, Shukoor M I, Zhu Z, You M X, Tan X H, Sanchez H, Powell D H, Dai H J, Tan W H. J. Am. Chem. Soc., 2010, 132: 17408.
[25]  Kim Y K, Na H K, Kwack S J, Ryoo S R, Lee Y M, Hong S H, Hong S W, Jeong Y, Min D H. ACS Nano, 2011, 5: 4550.
[26]  Northen T R, Yanes O, Northen M T, Marrinucci D, Uritboonthai W, Apon J, Golledge S L, Nordstr A, Siuzdak G. Nature, 2007, 449: 1033.
[27]  Tata A, Fernandes A P, Santos V G, Alberici R M, Araldi D, Parada C A, Braguini W, Veronez L, Bisson G S, Reis F Z, Alberici L C, Eberlin M N. Anal. Chem., 2012, 84: 6341.
[28]  Woo H K, Northen T R, Yanes O, Siuzdak G. Nat. Protoc., 2008, 3: 1341.
[29]  Yanes O, Woo H K, Northen T R, Oppenheimer S R, Shriver L, Apon J, Estrada M N, Potchoiba M J, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2009, 81: 2969.
[30]  Patti G J, Woo H K, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon J V, Steenwyk R, Manchester M, Siuzdak G. Anal. Chem., 2010, 82: 121.
[31]  Kinumi T, Saisu T, Takayama M, Niwa H. J. Mass Spectrom., 2000, 35: 417.
[32]  Zhang Q C, Zou H F, Guo Z, Zhang Q, Chen X, Ni J Y. Rapid Commun. Mass Spectrom., 2001, 15: 217.
[33]  Wen X J, Dagan S, Wysocki V H. Anal. Chem., 2007, 79: 434.
[34]  Dupre? M, Enjalbal C, Cantel S, Martinez J, Megouda N, Hadjersi T, Boukherroub R, Coffinier Y. Anal. Chem., 2012, 84: 10637
[35]  McLean J A, Stumpo K A, Russell D H. J. Am. Chem. Soc., 2005, 127: 5304.
[36]  Castellana E T, Russell D H. Nano Lett., 2007, 7: 3023.
[37]  张森(Zhang S),倪彧(Ni Y),李树奇(Li S Q),孔祥蕾(Kong X L). 化学进展(Progress in Chemistry), 2014, 26: 158.
[38]  Chiu T C, Huang L S, Lin P C, Chen Y C, Chen Y J, Lin C C, Chang H T. Recent Pat. Nanotechnol., 2007, 1: 99.
[39]  Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318: 162.
[40]  Nakamura E, Isobe H. Acc. Chem. Res., 2003, 36: 807.
[41]  Benyamini H, Shulman-Peleg A, Wolfson H J, Belgorodsky B, Fedeev L, Gozin M. Bioconjugate Chem., 2006, 17: 378.
[42]  Hopwood F G, Michalak L, Alderdice D S, Fisher K J, Willett G D. Rapid Commun. Mass Spectrom., 1994, 8: 881.
[43]  Kim Y K, Min D H. Langmuir, 2012, 28: 4453.
[44]  Shen Z X, Thomas J J, Averbuj C, Broo K M, Engelhard M, Crowell E J, Finn M G, Siuzdak G. Anal. Chem., 2001, 73: 612.
[45]  Nordstrom A, Apon J V, Uritboonthai W, Go E, Siuzdak G. Anal. Chem., 2006, 78: 272.
[46]  Pihlainen K, Grigoras K, Franssila S, Ketola R, Kotiaho T, Kostiainen R. J. Mass Spectrom., 2005, 40: 539.
[47]  Zou H F, Zhang Q C, Guo Z, Guo B C, Zhang Q, Chen X M. Angew. Chem. Int. Ed., 2002, 41: 646.
[48]  Go E P, Apon J V, Luo G, Saghatelian A, Daniels R H, Sahi V, Dubrow R, Cravatt B F, Vertes A, Siuzdak G. Anal. Chem., 2005, 77: 1641.
[49]  Wu H P, Yu C J, Lin C Y, Lin Y H, Tseng W L. J. Am. Soc. Mass Spectrom., 2009, 20: 875.
[50]  Chiang N C, Chiang C K, Lin Z H, Chiu T C, Chang H T. Rapid Commun. Mass Spectrom., 2009, 23: 3063.
[51]  Su C L, Tseng W L. Anal. Chem., 2007, 79: 1626.
[52]  Amendola V, Litti L, Meneghetti M. Anal. Chem., 2013, 85: 11747.
[53]  Chen W T, Chiang C K, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 864.
[54]  Chen L C, Yonehama J, Ueda T, Hori H, Hiraoka K, J. Mass Spectrom., 2007, 42: 346.
[55]  Shibamoto K, Sakata K, Nagoshi K, Korenaga T. J. Phys. Chem. C, 2009, 113: 17774.
[56]  Castellana E T, Gamez R C, Gomez M E, Russell D H. Langmuir, 2010, 26: 6066.
[57]  Gámez F, Hurtado P, Castillo P M, Caro C, Hortal A R, Zaderenko P, Martínez-Haya B. Plasmonics, 2010, 5: 125.
[58]  Weng C, Cang J S, Chang J Y, Hsiung T M, Unnikrishnan B, Hung Y L, Tseng Y T, Li Y J, Shen Y W, Huang C C. Anal. Chem., 2014, 86: 3167.
[59]  Liu Y C, Chang H T, Chiang C K, Huang C C. ACS Appl. Mater. Interfaces, 2012, 4: 5241.
[60]  Li Y J, Tseng Y T, Unnikrishnan B, Huang C C. ACS Appl. Mater. Interfaces, 2013, 5: 9161.
[61]  Chiu W C, Huang C C. Anal. Chem., 2013, 85: 6922.
[62]  Liu Y C, Chiang C K, Chang H T, Lee Y F, Huang C C. Adv. Funct. Mater., 2011, 21: 4448.
[63]  Zhu Z J, Ghosh P S, Miranda O R, Vachet R W, Rotello V M. J. Am. Chem. Soc., 2008, 130: 14139.
[64]  Zhu Z J, Rotello V M, Vachet R W. Analyst, 2009, 134: 2183.
[65]  Chiu T C, Chang L C, Chiang C K, Chang H T. J. Am. Soc. Mass Spectrom., 2008, 19: 1343.
[66]  Shrivas K, Wu H F. Rapid Commun. Mass Spectrom., 2008, 22: 2863.
[67]  Wang M T, Liu M H, Wang R C, Changa S Y. J. Am. Soc. Mass Spectrom., 2009, 20: 1925.
[68]  Yan H, Xu N, Huang W Y, Han H M, Xiao S J. Int. J. Mass Spectrom., 2009, 281: 1.
[69]  Cha S, Song Z H, Nikolau B J, Yeung E S. Anal. Chem., 2009, 81: 2991.
[70]  Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M. J. Am. Soc. Mass Spectrom., 2010, 21: 1446.
[71]  Tu W, Takai K, Fukui K I, Miyazaki A, Enoki T, J. Phys. Chem. B, 2003, 107: 10134.
[72]  Bouslimani A, Bec N, Glueckmann M, Hirtz C, Larroque C. Rapid Commun. Mass Spectrom., 2010, 24: 415.
[73]  Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P. Angew. Chem. Int. Ed., 2006, 45: 7824.
[74]  Kawasaki H, Ozawa T, Hisatomi H, Arakawa R. Rapid Commun. Mass Spectrom., 2012, 26: 1849.
[75]  Yonezawa T, Kawasaki H, Tarui A, Watanabe T, Arakawa R, Shimada T, Mafune F. Anal. Sci., 2009, 25: 339.
[76]  Kawasaki H, Yonezawa T, Watanabe T, Arakawa R. J. Phys. Chem. C, 2007, 111: 16278.
[77]  Chiang C K, Chiang N C, Lin Z H, Lan G Y, Lin Y W, Chang H T. J. Am. Soc. Mass Spectrom., 2010, 21: 1204.
[78]  Yao T, Kawasaki H, Watanabe T, Arakawa R. Int. J. Mass Spectrom., 2010, 291: 145.
[79]  Kawasaki H, Yao T, Suganuma T, Okumura K, Iwaki Y, Yonezawa T, Kikuchi T, Arakawa R. Chem. Eur. J., 2010, 16: 10832.
[80]  Watanabe T, Kawasaki H, Yonezawa T, Arakawa R. J. Mass Spectrom., 2008, 43: 1063.
[81]  Kailasa S K, Wu H F. Microchim Acta, 2013, 180: 405.
[82]  Chen Z M, Geng Z R, Shao D L, Mei Y H, Wang Z L. Anal. Chem., 2009, 81: 7625.
[83]  Chiang C K, Yang Z, Lin Y W, Chen W T, Lin H J, Chang H T. Anal. Chem., 2010, 82: 4543.
[84]  Chen W T, Chiang C K, Lee C H, Chang H T. Anal. Chem., 2012, 84: 1924.
[85]  Arakawa R, Kawasaki H. Anal. Sci., 2010, 26: 1229.
[86]  Okuno S, Arakawa R, Okamoto K, Matsui Y, Seki S, Kozawa T, Tagawa S, Wada Y, Anal. Chem., 2005, 77: 5364.
[87]  Wada Y, Yanagishita T, Masuda H. Anal. Chem., 2007, 79: 9122.
[88]  Jokinen V, Aura S, Luosujvi L, Sainiemi L, Kotiaho T, Franssila S, Baumann M. J. Am. Soc. Mass Spectrom., 2009, 20: 1723.
[89]  Nitta S, Yamamoto A, Kurita M, Arakawa R, Kawasaki H. ACS Appl. Mater. Interfaces., 2014, 6: 8387.
[90]  Abdelhamid H N, Wu B S, Wu H F. Talanta, 2014, 126: 27.
[91]  Kawasaki H, Sugitani T, Watanabe T, Yonezawa T, Moriwaki H, Arakawa R. Anal. Chem., 2008, 80: 7524.
[92]  Kuo T R, Wang D Y, Chiu Y C, Yeh Y C, Chen W T, Chen C H, Chen C W, Chang H C, Hu C C, Chen C C. Anal. Chim. Acta, 2014, 809: 97.
[93]  Hong M, Qiu F, Huang L L, Zhu J. J. Phys. Chem. C, 2008, 112: 11078.
[94]  Hong M, Zhou X, Li J P, Tian Y, Zhu J. Anal. Chem., 2009, 81: 8839.
[95]  Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Rapid Commun. Mass Spectrom., 1988, 2: 151.
[96]  Law K P, Larkin J R. Anal. Bioanal. Chem., 2011, 399: 2597.
[97]  Tang H W, Ng K M, Lu W, Che C M, Anal. Chem., 2009, 81: 4720.
[98]  Chen S, Zheng H, Wang J N, Hou J, He Q, Liu H H, Xiong C Q, Kong X L, Nie Z X. Anal. Chem., 2013, 85: 6646.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133