全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

水和醇类分子及其混合物在纳米孔道材料中的传输扩散

DOI: 10.7536/PC141103, PP. 482-491

Keywords: ,醇类分子,纳米孔道材料,传输扩散

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着计算机科学技术的飞速发展,理论计算特别是分子动力学模拟技术在研究受限流体的性质时发挥着独特的作用.本文综述了近年来水和醇类分子及其混合物在纳米孔道材料中传输扩散的研究进展,包括单组分水、甲醇和乙醇等在多种纳米孔道材料中的传输扩散,以及甲醇/水和乙醇/水等混合物在碳纳米管和沸石膜中的吸附和分离,讨论了体系温度、分子浓度以及纳米孔道材料结构等因素对水和醇类分子传输扩散过程的影响.

References

[1]  Jorgensen W L. J. Chem. Phys., 1986, 90: 1276.
[2]  Jorgensen W L, Briggs J M, Conteras M L. J. Phys. Chem., 1990, 94: 1683.
[3]  Kosztolányi T, Bakó I, Pálinkás G. J. Chem. Phys., 2003, 118: 4546.
[4]  Morishige K, Kawano K. J. Chem. Phys., 2000, 112: 11023.
[5]  Zhao W H, Shang B, Du S P, Yuan L F, Yang J L, Zeng X C. J. Chem. Phys., 2012, 137: 034501.
[6]  Hwang S, Shao Q, Williams H, Hilty C, Gao Y Q. J. Phys. Chem. B, 2011, 115: 6653.
[7]  闵恩泽(Min E Z). 化学进展(Prog.Chem.), 2006, 18: 131.
[8]  Yang Y C, Min Q, Yang G R, Wang Y D, Hai Y. Petrochem. Technol., 1994, 23: 3568.
[9]  Krishna R, van Baten J M. J. Mem. Sci., 2010, 360: 476.
[10]  Du S P, Zhao W H, Yuan L F. Chin. J. Chem. Phys., 2012, 25: 410.
[11]  Preston G M, Agre P. Proc. Natl. Acad. Sci. USA, 1991, 88(24): 11110.
[12]  Preston G M, Carroll T P, Guno W B, Agre P. Science, 1992, 256: 385.
[13]  Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Nature, 2000, 407: 599.
[14]  De Groot B L, Engel A, Grubmüüller H. J. Mol. Biol., 2003, 325: 485.
[15]  Sui H, Han B G, Lee J K, Walian P, Jap B K. Nature, 2001, 414: 872.
[16]  Carloni P, Vidossich P, Cascella M. Protein, 2004, 55: 924.
[17]  Trnroth-Horesefield S, Wang Y, Hedfalk K. Nature, 2006, 439: 688.
[18]  Levitt D G, Elias S R, Hautman J M. Biochim. Biophys. Acta, 1978, 512: 436.
[19]  De Groot B L, Tieleman D P, Pohl P. Biophys. J., 2002, 82: 2934.
[20]  Iijima S, Chihashi T. Nature, 1993, 363: 603.
[21]  Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[22]  Mashl R J, Joseph S, Aluru N R, Jakobsson E. Nano Lett., 2003, 3: 589.
[23]  Koga K, Gao G T, Tanaka H, Zeng X C. Nature, 2001, 412: 802.
[24]  Bai J, Wang J, Zeng X C. Proc. Natl. Acad. Sci., 2006, 103: 19664.
[25]  De Souza N R, Kolesnikov A I, Burnham C J, Loong C K. J. Condes. Matter. Phys., 2006, 18: S2321.
[26]  Hummer G, Rasaiah J C, Noworyta J P. Nature, 2001, 414: 188.
[27]  Berezhkovskii A, Hummer G. Phys. Rev. Lett., 2002, 89, 064503.
[28]  Vasenkov S, Karger J. Phys. Rev. E, 2002, 66: 052601.
[29]  Striolo A. Nano Lett., 2006, 6: 633.
[30]  Byl O, Liu J C, Wang Y, Yim W L, Johnson J K, Yates J T. J. Am. Chem. Soc., 2006, 128: 12090.
[31]  Huang L L, Zhang L Z, Shao Q, Wang J, Lu L H, Lu X H, Jiang S Y, Shen W F. J. Phys. Chem. B, 2006, 110: 25761.
[32]  Huang L L, Shao Q, Lu L H, Lu X H, Zhang L Z, Wang J, Jiang S Y. Phys. Chem. Chem. Phys., 2006, 8: 3836.
[33]  Zhu Y D, Wei M J, Shao Q, Lu L H, Lu X H, Shen W F. J. Phys. Chem. C, 2009, 113: 882.
[34]  Gordillo M C, Marti J. Chem. Phys. Lett., 2000, 329: 341.
[35]  Hanasaki I, Nakatani A J. Chem. Phys., 2006, 124: 174714.
[36]  Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[37]  Wan R Z, Li J Y, Lu H J, Fang H P. J. Am. Chem. Soc., 2005, 127: 7166.
[38]  Wang S, Lu H J, Tu Y S, Wang C L, Fang H P. Chin. Phys. Lett., 2009, 26: 068702.
[39]  Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H. Proc. Natl. Acad. Sci., 2007, 104: 3687.
[40]  Gong X J, Li J Y, Lu H J, Wang R Z, Li J C, Hu J, Fang H P. Nat. Nanotechnol., 2007, 2: 709.
[41]  Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Science, 1995, 269: 966.
[42]  Won C Y, Aluru N R. J. Phys. Chem. C, 2008, 112: 1812.
[43]  Zang J, Konduri S, Nair S, Sholl D S. J.Am. Chem. Soc., 2009, 3(6): 1548.
[44]  Engels M, Bashford D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117(36): 9151.
[45]  Tarek M, Maigret B, Chipot C. Biophys. J., 2003, 85(4): 2287.
[46]  Zhu J C, Cheng J, Liao Z X, Lai Z H, Liu B. J. Comput. Aided. Mol. Des., 2008, 22: 773.
[47]  Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. A, 2010, 114: 2376.
[48]  Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. B, 2010, 114: 12183.
[49]  Liu J, Fan J F, Tang M, Zhou W Q. J. Chem. Inf. Model., 2012, 52: 2132.
[50]  Liu D Y, Fan J F, Song X Z, Li R, Li H. Comput. Mater. Sci., 2013, 78: 47.
[51]  Li H, Fan J F, Li R, Yan X L, Yu Y. J. Mol. Model, 2014, 20: 2370.
[52]  Yamaguchi T, Hidaka K, Soper A K. Mol. Phys., 1999, 96: 1159.
[53]  Adya A K, Bianchi L, Wormald C J. J. Chem. Phys., 2000, 112: 4231.
[54]  Narten A H, Habenschuss A. J. Chem. Phys., 1982, 77: 2144.
[55]  Morineau D, Guégan R, Xia Y D, Alba-Simionesco C. J. Chem. Phys., 2004, 121: 1466.
[56]  Guegan R, Morineau D, Alba-Simionesco C. J. Chem. Phys., 2005, 317: 236.
[57]  Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Gubbins K E, Radhakrishnan R. Phys. Chem. Chem. Phys., 2001, 3: 1179.
[58]  Zhang Q X, Zheng J, Shevade A, Zhang L Z, Gehrke S H, Heffelfinger G S, Jiang S Y. J. Chem. Phys., 2002, 117: 808.
[59]  Shah R, Gale J D, Payne M C. J. Phys. Chem., 1996, 100: 11688.
[60]  Haase F, Sauer J. Micropor. Mesopor. Mater., 2000, 379: 35.
[61]  Stich I, Gale J D, Terakura K, Payne M C. Chem. Phys. Lett., 1998, 283: 402.
[62]  Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2006, 110: 15926.
[63]  Nanok T, Vasenkov S, Keil F J, Fritzsche S. Microporous Mesoporous Mater., 2010, 127: 176.
[64]  Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2007, 111: 2836.
[65]  Dicks A L. J. Power Sources, 2006, 156: 128.
[66]  Burghaus U, Bye D, Cosert K, Goering J, Guerard A, Kadossov E, Lee E, Nadoyama Y, Richter N, Sxhaefer E. Chem. Phys. Lett., 2007, 442: 344.
[67]  Ellison M D, Morris S T, Sender M R, Brigham J, Padgett N E. J. Phys. Chem. C, 2007, 111: 18127.
[68]  Tang Z R. Physica B, 2010, 405: 770.
[69]  Ganji M D, Goodarzi M, Nashtahosseini M, Mommadi-nejad A. Commun. Theor. Phys., 2011, 55: 365.
[70]  Rebeca G F, Juan R G, Marco D A, Modesto O. J. Am. Chem. Soc., 2009, 131: 15678.
[71]  Saiz L, Padro J A, Guardia E. J. Phys. Chem. B, 1997, 101: 78.
[72]  Wensink E J W, Hoffmann A C, van Maaren P J, van der Spoel D. J. Chem. Phys., 2003, 119: 7308.
[73]  Jorgensen W L, Maxwell D S, Tirado-Rives J. J. Am. Chem. Soc., 1996, 118: 11225.
[74]  Stewart E, Shields R L, Taylor R S. J. Phys. Chem. B, 2003, 107: 2333.
[75]  Van de Spoel D, van Maaren P J, Larsson P, Timneanu N. J. Phys. Chem. B, 2006, 110: 4393.
[76]  Bertolini D, Cassettari M, Ferrario M. Adv. Chem. Phys., 1985, 62: 277.
[77]  Geiger A, Mausbach P. Springer Netherlands, 1991, 1713.
[78]  Haughney M, Ferrario M, Mcdonald I R. J. Phys. Chem., 1987, 91(19): 4934.
[79]  Narten A H, Habenschuss A. J. Chem. Phys., 1984, 80(7): 3387.
[80]  Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 341.
[81]  Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 345.
[82]  Jorgensen W L. J. Am. Chem. Soc., 1982, 104(2): 3738.
[83]  Sarkar S, Joarder R N. J. Chem. Phys., 1994, 100(7): 5118.
[84]  Zhou Q L, Zhou Q, Forman S A. Biochem., 2000, 39(48): 14920.
[85]  Ren H, Zhao Y, Dwyer D S, Peoples R W. J. Biol. Chem., 2012, 287(33): 27302.
[86]  Ohkubo T, Kaneko K. Colloid Surf. A, 2001, 187: 177.
[87]  邵庆(Shao Q), 黄亮亮(Huang L L), 陆小华(Lu X H), 吕玲红(Lv L H), 朱育丹(Zhu Y D), 沈文枫(Shen W F). 化学学报(Acta Chimica Sinica), 2007, 65(20): 2217.
[88]  Shao Q, Huang L L, Zhou J, Lu L H, Zhang L Z, Lu X H, Jiang S Y, Gubbins K E, Zhu Y D, Shen W F. J. Phys. Chem. C, 2007, 111: 15677.
[89]  Wesslein M, Heintz A, Reinhardt G A, Lichtenthaler R N. Pervaporation Process Chem. Ind., Bakish Materials Corp., 1988. p172.
[90]  Liu Q, Noble R D, Falconer J L, Funke H H. J. Membrane Sci., 1996, 117: 163.
[91]  Shevade A V, Jiang S Y, Gubbins K E. J. Chem. Phys., 2000, 113: 6933.
[92]  Yang J Z, Chen Y, Zhu A M, Liu Q L, Wu J Y. J. Membrane Sci., 2008, 318: 327.
[93]  Wu J Y, Liu Q L, Xiong Y, Zhu A M, Chen Y. J. Phys. Chem. B, 2009, 113(13): 4267.
[94]  Csányi é, Kristóf T, Lendvay G. J. Phys. Chem. C, 2009, 113: 12225.
[95]  Lee K, Lee J, Kim S, Ju B. Carbon, 2011, 49: 787.
[96]  Liu Y, Consta S, Goddard W A. J. Nanosci. Nanotechnol., 2010, 10: 3834.
[97]  Zheng J M, Lennon E, Tsao H K, Sheng Y J, Jiang S Y. J. Chem. Phys., 2005, 122: 214702.
[98]  Yang L, Gao Y Q. J. Am. Chem. Soc., 2010, 132: 842.
[99]  Nomura M, Yamaguchi T, Nakao S. J. Membr. Sci., 1998, 144: 161.
[100]  Takaba H, Kayama A, Nakao S. J. Phys. Chem. B, 2000, 104: 6353.
[101]  Jia W, Murad S. Mol. Phys., 2006, 104: 3033.
[102]  Lu L, Shao Q, Huang L L, Lu X H. Fluid Phase Equilibr., 2007, 261(1): 191.
[103]  Kristof T, Csanyi E, Rutkai G, Merenyi L. Mol. Simul., 2006, 32: 869.
[104]  Rutkai G, Csányi E, Kristóf T. Micropor. Mesopor. Mater., 2008, 114: 455.
[105]  Furukawa S, Goda K, Zhang Y, Nitta T. J. Chem. Eng. Jpn., 2004, 37: 67.
[106]  Yang J Z, Liu Q L, Wang H T. J. Mem. Sci., 2007, 291: 1.
[107]  Krishna R, van Baten J M. Langumir, 2010, 26(13): 10854.
[108]  Guo S Y, Yu C, Gu X, Jin W Q, Zhong J, Chen C L. J. Mem. Sci., 2011, 376(1): 40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133