全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

磷酸钙纳米结构材料的微波辅助液相合成

DOI: 10.7536/PC141218, PP. 459-471

Keywords: 微波,磷酸钙,羟基磷灰石,纳米材料,药物缓释,生物成像

Full-Text   Cite this paper   Add to My Lib

Abstract:

微波加热作为一种新兴热源具有加热速率快、制备时间短、节能等优点,已经被广泛应用于合成包括磷酸钙在内的多种无机纳米材料.磷酸钙作为典型的生物材料,其制备新方法的探索、结构/尺寸/形貌调控、性能研究和应用探索是生物材料领域的一个重要研究方向.本文阐述了微波辅助合成法用于制备纳米材料的优势,并综述了微波辅助液相快速合成磷酸钙纳米结构材料的进展.采用微波液相合成技术,可以制备出包括颗粒、一维、二维和三维结构在内的多种磷酸钙纳米结构材料,同时还可以通过功能性组分的掺杂/复合对磷酸钙纳米材料进行功能化.预期未来微波液相合成法在包括磷酸钙在内的多种无机纳米材料的合成领域将得到快速发展和广泛应用;另外,微波液相合成的磷酸钙纳米结构材料在药物递送和控释、蛋白吸附、金属离子吸附、生物成像及骨缺损修复等众多领域具有良好的应用前景.

References

[1]  Chen S, Ji J O, Zhou Z G, Gong L, Chen J D, Xu Y. Rare Metal Mat. Eng., 2008, 37: 94.
[2]  Nazir R, Iqbal N, Khan A S, Akram A, Asif A, Chaudhry A A, Rehman I U, Hussain R. Ceram. Int., 2012, 38: 457.
[3]  Venkateswarlu K, Bose A C, Rameshbabu N. Physica B, 2010, 405: 4256.
[4]  Kalita S J, Verma S. Mater. Sci. Eng. C Mater. Biol. Appl., 2010, 30: 295.
[5]  Smolen D, Chudoba T, Gierlotka S, Kedzierska A, Lojkowski W, Sobczak K, Swieszkowski W, Kurzydlowski K J. J. Nanomater., 2012, 2012: 841971.
[6]  Katsuki H, Furuta S, Komarneni S. J. Am. Ceram. Soc., 1999, 82: 2257.
[7]  Zhang D Y, Luo H M, Zheng L W, Wang K J, Li H X, Wang Y, Feng H X. J. Hazard. Mater., 2012, 241: 418.
[8]  Arami H, Mohajerani M, Mazloumi M, Khalifehzadeh R, Lak A, Sadrnezhaad S K. J. Alloy. Compd., 2009, 469: 391.
[9]  Kumar A R, Kalainathan S, Saral A M. Cryst. Res. Technol., 2010, 45: 776.
[10]  Lak A, Mazloumi M, Mohajerani M S, Zanganeh S, Shayegh M R, Kajbafvala A, Arami H, Sadrnezhaad S K. J. Am. Ceram. Soc., 2008, 91: 3580.
[11]  Kumar G S, Girija E K. Ceram. Int., 2013, 39: 8293.
[12]  Kumar G S, Thamizhavel A, Girija E K. Mater. Lett., 2012, 76: 198.
[13]  Sarig S, Kahana F. J. Cryst. Growth, 2002, 237: 55.
[14]  Yoon S Y, Park Y M, Park S S, Stevens R, Park H C. Mater. Chem. Phys., 2005, 91: 48.
[15]  Yang Z W, Jiang Y S, Wang A P, Li F F. J. Inorg. Mater., 2004, 19: 839.
[16]  Park Y M, Ryu S C, Yoon S Y, Stevens R, Park H C. Mater. Chem. Phys., 2008, 109: 440.
[17]  Krishna D S R, Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2007, 18: 1735.
[18]  Han J K, Song H Y, Saito F, Lee B T. Mater. Chem. Phys., 2006, 99: 235.
[19]  Nazir R, Khan A S, Ahmed A, Ur-Rehman A, Chaudhry A A, Rehman I U, Wong F S L. Ceram. Int., 2013, 39: 4339.
[20]  Siddharthan A, Seshadri S K, Kumar T S S. J. Mater. Sci. Mater. Med., 2004, 15: 1279.
[21]  Ran J G, Ran X, Gou L, Su B H, Huang C F, Li Y. Rare Metal Mat. Eng., 2007, 36: 162.
[22]  Sha L, Liu Y Y, Zhang Q, Hu M, Jiang Y S. Mater. Chem. Phys., 2011, 129: 1138.
[23]  Lee Y T, Youn M H, Paul R K, Lee K H, Song H Y. Mater. Chem. Phys., 2007, 104: 249.
[24]  Jalota S, Bhaduri S B, Tas A C. J. Biomed. Mater. Res. Part A, 2006, 78A: 481.
[25]  Murugan R, Ramakrishna S. Mater. Lett., 2004, 58: 230.
[26]  Zhou H, Bhaduri S. J. Biomed. Mater. Res. Part B, 2012, 100B: 1142.
[27]  Ma M G, Zhu Y J, Chang J. J. Phys. Chem. B, 2006, 110: 14226.
[28]  Liao J G, Liu Q. Rare Metal Mat. Eng., 2014, 43: 1779.
[29]  Vani R, Raja S B, Sridevi T S, Savithri K, Devaraj S N, Girija E K, Thamizhavel A, Kalkura S N. Nanotechnology, 2011, 22: 285701.
[30]  Zhao X Y, Zhu Y J, Chen F, Lu B Q, Wu J. CrystEngComm, 2013, 15: 206.
[31]  Qi C, Zhu Y J, Zhao X Y, Lu B Q, Tang Q L, Zhao J, Chen F. Chem. Eur. J., 2013, 19: 981.
[32]  Qi C, Zhu Y J, Chen F. ACS Appl. Mater. Interfaces, 2014, 6: 4310.
[33]  Zhao J, Zhu Y J, Zheng J Q, Chen F, Wu J. Microporous Mesoporous Mater., 2013, 180: 79.
[34]  Zhao X Y, Zhu Y J, Qi C, Chen F, Lu B Q, Zhao J, Wu J. Chem. Asian J., 2013, 8: 1313.
[35]  Qi C, Zhu Y J, Chen F. Chem. Asian J., 2013, 8: 88.
[36]  Qi C, Zhu Y J, Lu B Q, Zhao X Y, Zhao J, Chen F, Wu J. Chem. Eur. J., 2013, 19: 5332.
[37]  Zhao J, Zhu Y J, Cheng G F, Ruan Y J, Sun T W, Chen F, Wu J, Zhao X Y, Ding G J. Mater. Lett., 2014, 124: 208.
[38]  Qi C, Tang Q L, Zhu Y J, Zhao X Y, Chen F. Mater. Lett., 2012, 85: 71.
[39]  Jin Y D. Acc. Chem. Res., 2014, 47: 138.
[40]  McCarthy J R, Weissleder R. Adv. Drug Deliv. Rev., 2008, 60: 1241.
[41]  Park K, Lee S, Kang E, Kim K, Choi K, Kwon I C. Adv. Funct. Mater., 2009, 19: 1553.
[42]  Kanchana P, Lavanya N, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 35: 85.
[43]  Chandra V S, Baskar G, Suganthi R V, Elayaraja K, Joshy M I A, Beaula W S, Mythili R, Venkatraman G, Kalkura S N. ACS Appl. Mater. Interfaces, 2012, 4: 1200.
[44]  Chen F, Li C, Zhu Y J, Zhao X Y, Lu B Q, Wu J. Biomater. Sci., 2013, 1: 1074.
[45]  Iqbal N, Kadir M R A, Malek N, Bin Mahmood N H, Murali M R, Kamarul T. Mater. Res. Bull., 2013, 48: 3172.
[46]  Iqbal N, Kadir M R A, Malek N, Mahmood N H, Murali M R, Kamarul T. Mater. Lett., 2012, 89: 118.
[47]  Rameshbabu N, Kumar T S S, Prabhakar T G, Sastry V S, Murty K, Rao K P. J. Biomed. Mater. Res. Part A, 2007, 80A: 581.
[48]  Rameshbabu N, Kumar T S S, Rao K P. Bull. Mat. Sci., 2006, 29: 611.
[49]  Ravi N D, Balu R, Kumar T S S. J. Am. Ceram. Soc., 2012, 95: 2700.
[50]  Iqbal N, Kadir M R A, Mahmood N H, Salim N, Froemming G R A, Balaji H R, Kamarul T. Ceram. Int., 2014, 40: 4507.
[51]  Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L. Colloid Surf. A Physicochem. Eng. Asp., 2014, 451: 172.
[52]  Nabiyouni M, Zhou H, Luchini T J F, Bhaduri S B. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 37: 363.
[53]  Olson T Y, Orme C A, Han T Y J, Worsley M A, Rose K A, Satcher J H, Kuntz J D. CrystEngComm, 2012, 14: 6384.
[54]  Mishra V K, Bhattacharjee B N, Parkash O, Kumar D, Rai S B. J. Alloy. Compd., 2014, 614: 283.
[55]  Padmanabhan S K, Haq E U, Licciulli A. Curr. Appl. Phys., 2014, 14: 87.
[56]  Weissleder R. Nat. Biotechnol., 2001, 19: 316.
[57]  Yan J L, Estevez M C, Smith J E, Wang K M, He X X, Wang L, Tan W H. Nano Today, 2007, 2: 44.
[58]  Bunzli J C G. Chem. Rev., 2010, 110: 2729.
[59]  Han Y C, Wang X Y, Li S P. Curr. Nanosci., 2010, 6: 178.
[60]  Chen F, Huang P, Zhu Y J, Wu J, Cui D X. Biomaterials, 2012, 33: 6447.
[61]  Wagner D E, Eisenmann K M, Nestor-Kalinoski A L, Bhaduri S B. Acta Biomater., 2013, 9: 8422.
[62]  Andre R S, Paris E C, Gurgel M F C, Rosa I L V, Paiva-Santos C O, Li M S, Varela J A, Longo E. J. Alloy. Compd., 2012, 531: 50.
[63]  Yang C, Yang P P, Wang W X, Gai S L, Wang J, Zhang M L, Lin J. Solid State Sci., 2009, 11: 1923.
[64]  Escudero A, Calvo M E, Rivera-Fernandez S, de la Fuente J M, Ocana M. Langmuir, 2013, 29: 1985.
[65]  Chen F, Huang P, Zhu Y J, Wu J, Zhang C L, Cui D X. Biomaterials, 2011, 32: 9031.
[66]  Li Z X, Barnes J C, Bosoy A, Stoddart J F, Zink J I. Chem. Soc. Rev., 2012, 41: 2590.
[67]  Ding G, Zhu Y, Qi C, Lu B Q, Wu J, Chen F. J. Colloid Interface Sci., 2014, 443: 72.
[68]  Komarneni S, Roy R. Mater. Lett., 1985, 3: 165.
[69]  Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. Tetrahedron Lett., 1986, 27: 279.
[70]  Giguere R J, Bray T L, Duncan S M, Majetich G. Tetrahedron Lett., 1986, 27: 4945.
[71]  Hayes B L. Microwave Synthesis:Chemistry at the Speed of Light. Matthews NC USA:CEM Publishing, 2002.
[72]  Zhu Y J, Chen F. Chem. Rev., 2014, 114: 6462.
[73]  Tzaphlidou M J. Biol. Phys., 2008, 34: 39.
[74]  Weiner S, Wagner H D. Annu. Rev. Mater. Sci., 1998, 28: 271.
[75]  Chen F, Zhu Y J. Curr. Nanosci., 2014, 10: 465.
[76]  Dallinger D, Kappe C O. Chem. Rev., 2007, 107: 2563.
[77]  Tompsett G A, Conner W C, Yngvesson K S. ChemPhysChem, 2006, 7: 296.
[78]  Schanche J S. Mol. Divers., 2003, 7: 293.
[79]  Gabriel C, Gabriel S, Grant E H, Halstead B S J, Mingos D M P. Chem. Soc. Rev., 1998, 27: 213.
[80]  Collins M J. Future Med. Chem., 2010, 2: 151.
[81]  Nadagouda M N, Speth T F, Varma R S. Acc. Chem. Res., 2011, 44: 469.
[82]  Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Chem. Eur. J., 2005, 11: 440.
[83]  Zhang X Y, Liu Z. Nanoscale, 2012, 4: 707.
[84]  Park S E, Chang J S, Hwang Y K, Kim D S, Jhung S H, Hwang J S. Catal. Surv. Asia, 2004, 8: 91.
[85]  Baghbanzadeh M, Carbone L, Cozzoli P D, Kappe C O. Angew. Chem. Int. Edit., 2011, 50: 11312.
[86]  Bogdal D, Prociak A, Michalowski S. Curr. Org. Chem., 2011, 15: 178.
[87]  Lerner E, Sarig S, Azoury R. J. Mater. Sci. Mater. Med., 1991, 2: 138.
[88]  Vaidhyanathan B, Rao K J. Bull. Mat. Sci., 1996, 19: 1163.
[89]  Kundu P K, Waghode T S, Bahadur D, Datta D. Med. Biol. Eng. Comput., 1998, 36: 654.
[90]  Lopez-Macipe A, Gomez-Morales J, Rodriguez-Clemente R. Adv. Mater., 1998, 10: 49.
[91]  Yang Z W, Jiang Y S, Wang Y J, Ma L Y, Li F F. Mater. Lett., 2004, 58: 3586.
[92]  Amer W, Abdelouahdi K, Ramananarivo H R, Zahouily M, Fihri A, Djessas K, Zahouily K, Varma R S, Solhy A. CrystEngComm, 2014, 16: 543.
[93]  Amer W, Abdelouandi K, Ramananarivo H R, Zahouily M, Fihri A, Coppel Y, Varma R S, Solhy A. Mater. Lett., 2013, 107: 189.
[94]  Mishra V K, Srivastava S K, Asthana B P, Kumar D. J. Am. Ceram. Soc., 2012, 95: 2709.
[95]  Kanchana P, Sekar C. Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 42: 601.
[96]  Liu J B, Li K W, Wang H, Zhu M K, Xu H Y, Yan H. Nanotechnology, 2005, 16: 82.
[97]  Wang K W, Zhu Y J, Chen X Y, Zhai W Y, Wang Q, Chen F, Chang J A, Duan Y R. Chem. Asian J., 2010, 5: 2477.
[98]  Wang K W, Zhu Y J, Chen F, Cheng G F, Huang Y H. Mater. Lett., 2011, 65: 2361.
[99]  Wang Y Z, Fu Y. Mater. Lett., 2011, 65: 3388.
[100]  Reardon P J T, Handoko A D, Li L, Huang J, Tang J W. J. Mater. Chem. B, 2013, 1: 6170.
[101]  Chen F, Sun T W, Qi C, Wu J, Cui D X, Zhu Y J. J. Inorg. Mater., 2014, 29: 776.
[102]  Gopi D, Indira J, Nithiya S, Kavitha L, Mudali U K, Kanimozhi K. Bull. Mater. Sci., 2013, 36: 799.
[103]  Benzigar M R, Mane G P, Talapaneni S N, Varghese S, Anand C, Aldeyab S S, Balasubramanian V V, Vinu A. Chem. Lett., 2012, 41: 458.
[104]  Banba Y, Umeda T, Kuroe H, Toyama T, Musha Y, Itatani K. J. Ceram. Soc. Jpn., 2013, 121: 901.
[105]  Guo Y P, Yao Y B, Ning C Q, Chu L F, Guo Y J. Mater. Lett., 2011, 65: 1007.
[106]  Pushpakanth S, Srinivasan B, Sreedhar B, Sastry T P. Mater. Chem. Phys., 2008, 107: 492.
[107]  Jia N, Li S M, Ma M G, Sun R C. Mater. Lett., 2012, 68: 44.
[108]  Islam M, Mishra P C, Patel R. J. Hazard. Mater., 2011, 189: 755.
[109]  Ma M G, Zhu J F, Jia N, Li S M, Sun R C, Cao S W, Chen F. Carbohydr. Res., 2010, 345: 1046.
[110]  Jia N, Li S M, Zhu J F, Ma M G, Xu F, Wang B, Sun R C. Mater. Lett., 2010, 64: 2223.
[111]  Tang Q L, Wang K W, Zhu Y J, Chen F. Mater. Lett., 2009, 63: 1332.
[112]  Guha A, Nayar S, Thatoi H N. Bioinspir. Biomim., 2010, 5: 024001.
[113]  Hasret E, Ipekoglu M, Altintas S, Ipekoglu N A. Environ. Sci. Pollut. Res., 2012, 19: 2766.
[114]  Elkady M F, Mahmoud M M, Abd-El-Rahman H M. J. Non-Cryst. Solids, 2011, 357: 1118.
[115]  Huang Y, Zhou G, Zheng L S, Liu H F, Niu X F, Fan Y B. Nanoscale, 2012, 4: 2484.
[116]  Chen F, Huang P, Qi C, Lu B Q, Zhao X Y, Li C, Wu J, Cui D X, Zhu Y J. J. Mater. Chem. B, 2014, 2: 7132.
[117]  Putro J N, Handoyo N, Kristiani V, Soenjaya S A, Ki O L, Soetaredjo F E, Ju Y H, Ismadji S. Ceram. Int., 2014, 40: 11453.
[118]  Zou Z Y, Lin K L, Chen L, Chang J. Ultrason. Sonochem., 2012, 19: 1174.
[119]  Liang T, Qian J C, Yuan Y, Liu C S. J. Mater. Sci., 2013, 48: 5334.
[120]  Poinern G E J, Ghosh M K, Ng Y J, Issa T B, Anand S, Singh P. J. Hazard. Mater., 2011, 185: 29.
[121]  Zou Z Y, Liu X G, Chen L, Lin K L, Chang J. J. Mater. Chem., 2012, 22: 22637.
[122]  Arul K T, Ramya J R, Bhalerao G M, Kalkura S N. Ceram. Int., 2014, 40: 13771.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133