全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

锂离子电池锡-金属-碳复合负极材料

DOI: 10.7536/PC150161, PP. 1110-1122

Keywords: 锂离子电池,负极,锡碳复合物,金属,锡-钴-碳

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨作为锂离子电池的负极材料已经使用了很长时间。但由于其嵌锂容量低,已不能满足动力电池快速发展的需求。而锡可以与锂形成合金,有可能取代石墨成为下一代锂离子电池负极材料。但是单纯的金属锡在电池循环过程中发生巨大的体积变化,容易导致电极材料的粉化。而碳材料具有较高的导电性,良好的机械性能和储锂性能。为了充分发挥金属锡和碳材料的优势,锡-碳(Sn-C)复合材料得到了广泛研究。本文详细介绍了无定型碳、石墨(G)、石墨烯(GP)、碳纳米管(CNT)、碳纳米纤维(CNF)等碳材料作为惰性的导电基体与锡形成的二元复合物,阐述了锡与其它金属(M)形成的碳基三元、多元复合物的结构和性能。通过总结近些年对锡碳复合物结构与性能的研究,相信多元复合和多种结构的应用是提高锡-碳复合负极材料的关键。其中,以Sn-Co-C为基础的多元复合负极材料最有可能走向市场应用。

References

[1]  Liu S, Li Q, Chen Y, Zhang F. J. Alloys Compd., 2009, 478(1): 694.
[2]  Cai Z, Xu L, Yan M, Han C, He L, Hercule K M, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L. Nano Lett., 2015, 15(1): 738.
[3]  Bresser D, Mueller F, Buchholz D, Paillard E, Passerini S. Electrochim. Acta., 2014, 128: 163.
[4]  Mouyane M, Ruiz J M, Artus M, Cassaignon S, Jolivet J P, Caillon G, Jordy C, Driesen K, Scoyer J, Stievano L, Olivier-Fourcade J, Jumas J C. J. Power Sources, 2011, 196(16): 6863.
[5]  Wang J, Li D, Fan X, Gou L, Wang J, Li Y, Lu X, Li Q. J. Alloys Compd., 2012, 516: 33.
[6]  Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete M L, Croce F. J. Power Sources, 2013, 226: 241.
[7]  Nobili F, Meschini I, Mancini M, Tossici R, Marassi R, Croce F. Electrochim. Acta., 2013, 107: 85.
[8]  Chen J, Yang L, Fang S, Hirano S. Electrochem. Commun., 2011, 13(8): 848.
[9]  Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[10]  Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah M R, Wang C. Nano Lett., 2013, 13(2): 470.
[11]  Zhou X, Zou Y, Yang J. J. Solid State Chem., 2013, 198: 231.
[12]  Li X, Dhanabalan A, Gu L, Wang C. Adv. Energy Mater., 2012, 2(2): 238.
[13]  Lee Y, Kang Y M. J. Power Sources, 2011, 196(24): 10686.
[14]  Fan X, Shao J, Xiao X, Wang X, Li S, Ge H, Chen L. Nano Energy, 2014, 9: 196.
[15]  Wang G X, Ahn J H, Lindsay M J, Sun L, Bradhurst D H, Dou S X, Liu H K. J. Power Sources, 2001, 97: 211.
[16]  Balan L, Schneider R, Willmann P, Billaud D. J. Power Sources, 2006, 161(1): 587.
[17]  Lin Y S, Duh J G, Shieh D T, Yang M H. J. Alloys Compd., 2010, 490(1/2): 393.
[18]  Morishita T, Hirabayashi T, Okuni T, Ota N, Inagaki M. J. Power Sources, 2006, 160(1): 638.
[19]  Zheng X, Lv W, He Y B, Zhang C, Wei W, Tao Y, Li B, Yang Q H. J. Nanomater., 2014, 2014.
[20]  Nabais C, Schneider R, Willmann P, Billaud D. Energy Convers. Manage., 2012, 56: 32.
[21]  Wang Y, Li B, Zhang C, Tao H, Kang S, Jiang S, Li X. J. Power Sources, 2012, 219: 89.
[22]  Grigoriants I, Sominski L, Li H, Ifargan I, Aurbach D, Gedanken A. Chem. Commun., 2005(7): 921.
[23]  Nobili F, Tossici R, Croce F, Scrosati B, Marassi R. J. Power Sources, 2001, 94(2): 238.
[24]  Nobili F, Mancini M, Dsoke S, Tossici R, Marassi R. J. Power Sources, 2010, 195(20): 7090.
[25]  Nobili F, Mancini M, Stallworth P E, Croce F, Greenbaum S G, Marassi R. J. Power Sources, 2012, 198: 243.
[26]  Chen S, Wang Y, Ahn H, Wang G. J. Power Sources, 2012, 216: 22.
[27]  Zhou X, Zou Y, Yang J. J. Power Sources, 2014, 253: 287.
[28]  Lian P, Wang J, Cai D, Liu G, Wang Y, Wang H. J. Alloys Compd., 2014, 604: 188.
[29]  Wang D, Li X, Yang J, Wang J, Geng D, Li R, Cai M, Sham T K, Sun X. Phys. Chem. Chem. Phys., 2013, 15(10): 3535.
[30]  Beck F R, Epur R, Hong D, Manivannan A, Kumta P N. Electrochim. Acta, 2014, 127: 299.
[31]  Liang S, Zhu X, Lian P, Yang W, Wang H. J. Solid State Chem., 2011, 184(6): 1400.
[32]  Yue W, Yang S, Liu Y, Yang X. Mater. Res. Bull., 2013, 48(4): 1575.
[33]  Zhu J, Wang D, Cao L, Liu T. J. Mater. Chem. A, 2014, 2(32): 12918.
[34]  Luo B, Wang B, Li X, Jia Y, Liang M, Zhi L. Adv. Mater., 2012, 24(26): 3538.
[35]  Ji L, Tan Z, Kuykendall T, An E J, Fu Y, Battaglia V, Zhang Y. Energy Environ. Sci., 2011, 4(9): 3611.
[36]  Li Z, Lv W, Zhang C, Qin J, Wei W, Shao J, Wang D, Li B, Kang F, Yang Q. Nanoscale, 2014, 6(16): 9554.
[37]  Wang C, Ju J, Yang Y, Tang Y, Bi H, Liao F, Lin J, Shi Z, Huang F, Han R P S. RSC Adv., 2013, 3(44): 21588.
[38]  Li N, Song H, Cui H, Wang C. Nano Energy, 2014, 3: 102.
[39]  Wang C, Li Y, Chui Y S, Wu Q H, Chen X, Zhang W. Nanoscale, 2013, 5(21): 10599.
[40]  Wen Z, Cui S, Kim H, Mao S, Yu K, Lu G, Pu H, Mao O, Chen J. J. Mater. Chem., 2012, 22(8): 3300.
[41]  Luo B, Wang B, Liang M, Ning J, Li X, Zhi L. Adv. Mater., 2012, 24(11): 1405.
[42]  Zheng J W, Nai S M L, Ng M F, Wu P, Wei J, Gupta M. J. Phys. Chem. C, 2009, 113(31): 14015.
[43]  Zhao B, Yadian B L, Li Z J, Liu P, Zhang Y F. Surf. Eng., 2009, 25(1): 31.
[44]  Alaf M, Akbulut H. J. Power Sources, 2014, 247: 692.
[45]  Menkin S, Barkay Z, Golodnitsky D, Peled E. J. Power Sources, 2014, 245: 345.
[46]  Seo S D, Lee G H, Lim A H, Min K M, Kim J C, Shim H W, Park K S, Kim D W. RSC Adv., 2012, 2(8): 3315.
[47]  Wu M, Wang C, Chen J, Wang F, Yi B. Ionics, 2013, 19(10): 1341.
[48]  Liu W L, Hsieh S H, Chen W J. Appl. Surf. Sci., 2007, 253(20): 8356.
[49]  Huang X, Chen J, Yu H, Peng S, Cai R, Yan Q, Hng H H. RSC Adv., 2013, 3(16): 5310.
[50]  Zheng Y, Xie J, Song W, Liu S, Cao G, Zhao X. J. Mater. Res., 2011, 26(21): 2719.
[51]  Lan C, Gong J, Jiang Y, Deng Y, Yang S. Physica E, 2012, 44(10): 2128.
[52]  Li N, Song H, Cui H, Yang G, Wang C. J. Mater. Chem. A, 2014, 2(8): 2526.
[53]  Zou Y, Wang Y. ACS Nano, 2011, 5(10): 8108.
[54]  Li S, Chen C, Fu K, Xue L, Zhao C, Zhang S, Hu Y, Zhou L, Zhang X. Solid State Ionics, 2014, 254: 17.
[55]  Shafiei M, Alpas A T. J. Power Sources, 2011, 196(18): 7771.
[56]  Zou L, Gan L, Lv R, Wang M, Huang Z H, Kang F, Shen W. Carbon, 2011, 49(1): 89.
[57]  Lee B S, Son S B, Park K M, Yu W R, Oh K H, Lee S H. J. Power Sources, 2012, 199: 53.
[58]  Yu Y, Gu L, Wang C, Dhanabalan A, van Aken P A, Maier J. Angew. Chem. Int. Ed., 2009, 48(35): 6485.
[59]  Yu Y, Yang Q, Teng D, Yang X, Ryu S. Electrochem. Chmmun., 2010, 12(9): 1187.
[60]  Zou L, Gan L, Kang F, Wang M, Shen W, Huang Z. J. Power Sources, 2010, 195(4): 1216.
[61]  Wang H, Gao P, Lu S, Liu H, Yang G, Pinto J, Jiang X. Electrochim. Acta, 2011, 58: 44.
[62]  Xia X, Wang X, Zhou H, Niu X, Xue L, Zhang X, Wei Q. Electrochim. Acta, 2014, 121: 345.
[63]  Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A. Adv. Mater., 2003, 15(22): 1929.
[64]  Zussman E, Yarin A L, Bazilevsky A V, Avrahami R, Feldman M. Adv. Mater., 2006, 18(3): 348.
[65]  Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39(8): 3115.
[66]  Huang T, Yao Y, Wei Z, Liu Z, Yu A. Electrochim. Acta, 2010, 56(1): 476.
[67]  Tarascon J M, Armand M. Nature., 2001, 414(6861): 359.
[68]  Julien C M. Mater. Sci. Eng., R., 2003, 40(2): 47.
[69]  Todd A D W, Ferguson P P, Fleischauer M D, Dahn J R. Int. J. Energ Res., 2010, 34(6): 535.
[70]  Ferguson P P, Todd A D W, Dahn J R. Electrochem. Chmmun., 2008, 10(1): 25.
[71]  Ferguson P P, Todd A D W, Martine M L, Dahn J R. J. Electrochem. Soc., 2013, 161(3): A342.
[72]  Todd A D W, Ferguson P P, Barker J G, Fleischauer M D, Dahn J R. J. Electrochem. Soc., 2009, 156(12): A1034.
[73]  Ferguson P P, Martine M L, Dunlap R A, Dahn J R. Electrochim. Acta, 2009, 54(19): 4534.
[74]  Ferguson P P, Rajora M, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(3): A204.
[75]  Zhou F, Zhao X, Ferguso Dń P P, Thorne J S, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2008, 155(12): A921.
[76]  Thorne J S, Ferguson P P, Dunlap R A, Dahn J R. J. Alloys Compd., 2009, 472(1/2): 390.
[77]  Park M S, Needham S A, Wang G X, Kang Y M, Park J S, Dou S X, Liu H K. Chem. Mater., 2007, 19(10): 2406.
[78]  Park C M, Jeon K J. Chem. Commun., 2011, 47(7): 2122.
[79]  Chen S, Chen P, Wu M, Pan D, Wang Y., Electrochem. Chmmun., 2010, 12(10): 1302.
[80]  Hu R, Liu H, Zeng M, Wang H, Zhu M. J. Mater. Chem., 2011, 21(12): 4629.
[81]  Edfouf Z, Fariaut-Georges C, Cuevas F, Latroche M, Hézèque T, Caillon G, Jordy C, Sougrati M T, Jumas J C. Electrochim. Acta, 2013, 89: 365.
[82]  Li J, Wu P, Tang Y, Xu X, Zhou Y, Chen Y, Lu T. CrystEngComm, 2013, 15(47): 10340.
[83]  Wang X, Wen Z, Lin B, Lin J, Wu X, Xu X. J. Power Sources, 2008, 184(2): 508.
[84]  Yang H, Li L. J. Alloys Compd., 2014, 584: 76.
[85]  Zhang R, Fang G, Liu W, Xia B, Sun H, Zheng J, Li D. Appl. Surf. Sci., 2014, 292: 682.
[86]  Fan L, Zhu Y, Zhang J, Liang J, Wang L, Wei D, Li X, Qian Y. Electrochim. Acta., 2014, 121: 21.
[87]  胡仁宗(Hu R Z), 杨黎春(Yang L C), 朱敏(Zhu M). 科学通报(Chinese Science Bulletin), 2013, 58(31): 3140.
[88]  Ferguson P P, Martine M L, George A E, Dahn J R. J. Power Sources, 2009, 194(2): 794.
[89]  Ferguson P P, Liao P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2009, 156(1): A13.
[90]  Liang Z, Yang S. J. Mater. Sci. Technol., 2010, 26(7): 653.
[91]  Yoon S, Manthiram A. J. Mater. Chem., 2009, 20(2): 236.
[92]  Chang W S, Park C M, Sohn H J. J. Electroanal. Chem., 2012, 671: 67.
[93]  Wen C J, Huggins R A. J. Electrochem. Soc., 1981, 128(6): 1181.
[94]  Winter M, Besenhard J O, Spahr M E, Novák P. Adv. Mater., 1998, 10(10): 725.
[95]  Besenhard J O, Yang J, Winter M. J. Power Sources, 1997, 68(1): 87.
[96]  Courtney I A, Dahn J R. J. Electrochem. Soc., 1997, 144(9): 2943.
[97]  Courtney I A, McKinnon W R, Dahn J R. J. Electrochem. Soc., 1999, 146(1): 59.
[98]  Kamali A R, Fray D J. Rev. Adv. Mater. Sci., 2011, 27(1): 14.
[99]  Wachtler M, Besenhard J O, Winter M. J. Power Sources, 2001, 94(2): 189.
[100]  Wang Y, Wu M, Jiao Z, Lee J Y. Chem. Mater., 2009, 21(14): 3210.
[101]  Jankovi L, Gournis D, Trikalitis P N, Arfaoui I, Cren T, Rudolf P, Sage M H, Palstra T T M, Kooi B, De Hosson J, Karakassides M A, Dimos K, Moukarika A, Bakas T. Nano Lett., 2006, 6(6): 1131.
[102]  Li R, Sun X, Zhou X, Cai M, Sun X. J. Phys. Chem. C, 2007, 111(26): 9130.
[103]  Cui W, Wang F, Wang J, Wang C, Xia Y. Electrochim. Acta, 2011, 56(13): 4812.
[104]  Li M Y, Liu C L, Shi M R, Dong W S. Electrochim. Acta., 2011, 56(8): 3023.
[105]  Chen Z, Qian J, Ai X, Cao Y, Yang H. J. Power Sources, 2009, 189(1): 730.
[106]  Gu Y, Wu F, Wang Y. Adv. Funct. Mater., 2013, 23(7): 893.
[107]  Wang Y, Lee J Y. Angew. Chem. Int. Ed., 2006, 45(42): 7039.
[108]  Huang L, Cai J S, He Y, Ke F S, Sun S G. Electrochem. Chmmun., 2009, 11(5): 950.
[109]  Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. J. Nanopart. Res., 2013, 15(9): 1.
[110]  Cui W J, Li F, Liu H J, Wang C X, Xia Y Y. J. Mater. Chem., 2009, 19(39): 7202.
[111]  Chen J, Yang L, Fang S, Zhang Z, Hirano S I. Electrochim. Acta., 2013, 105: 629.
[112]  Lei W X, Pan Y, Zhou Y C, Zhou W, Peng M L, Ma Z S. RSC Adv., 2013, 4(7): 3233.
[113]  Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Power Sources, 2012, 216: 139.
[114]  Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Electrochem. Soc., 2011, 158(12): A1328.
[115]  Ferguson P P, Dunlap R A, Dahn J R. J. Electrochem. Soc., 2010, 157(3): A326.
[116]  Thorne J S, Sanderson R J, Dahn J R, Dunlap R A. J. Electrochem. Soc., 2010, 157(10): A1085.
[117]  Thorne J S, Dahn J R, Obrovac M N, Dunlap R A. J. Alloys Compd., 2011, 509(23): 6705.
[118]  Li J, Ru Q, Hu S, Sun D, Zhang B, Hou X. Electrochim. Acta., 2013, 113: 505.
[119]  Hassoun J, Derien G, Panero S, Scrosati B. Electrochim. Acta, 2009, 54(19): 4441.
[120]  Park C M, Sohn H J. Electrochim. Acta., 2009, 54(26): 6367.
[121]  褚道葆(Chu D B), 李建(Li J), 袁希梅(Yuan X M), 李自龙(Li Z L), 魏旭(Wei X), 万勇(Wan Y). 化学进展(Progress in Chemistry), 2012, 24(08): 1466.
[122]  Wachtler M, Winter M, Besenhard J O. J. Power Sources, 2002, 105(2): 151.
[123]  Yoon S, Manthiram A. Electrochim. Acta., 2011, 56(8): 3029.
[124]  Applestone D, Manthiram A. RSC Adv., 2012, 2(12): 5411.
[125]  Edfouf Z, Cuevas F, Latroche M, Georges C, Jordy C, Hézèque T, Caillon G, Jumas J C, Sougrati M T. J. Power Sources, 2011, 196(10): 4762.
[126]  Edfouf Z, Sougrati M T, Fariaut-Georges C, Cuevas F, Jumas J C, Hézèque T, Jordy C, Caillon G, Latroche M. J. Power Sources, 2013, 238: 210.
[127]  Zhong Y, Zhang Y, Cai M, Balogh M P, Li R, Sun X. Appl. Surf. Sci., 2013, 270: 722.
[128]  Li X, Zhong Y, Cai M, Balogh M P, Wang D, Zhang Y, Li R, Sun X. Electrochim. Acta, 2013, 89: 387.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133