全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2011 

锂离子二次电池界面过程的红外光谱研究

, PP. 349-356

Keywords: 红外光谱,锂离子二次电池,界面过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂离子二次电池界面反应主要包括锂离子嵌入/脱出、溶剂化/去溶剂化、电解液分解和固体电解质界面膜的形成与变化等。这些过程直接影响锂离子二次电池能源转换和储存的效率以及安全性能。运用红外光谱从分子水平上认识锂离子二次电池的各种界面反应过程并阐述其反应机理,有助于设计锂离子二次电池新体系、提升其性能并发展非水电解质理论。本文综述了锂离子二次电池界面过程的红外光谱(FTIRS)研究的最新进展,重点阐述锂离子二次电池研究中非原位红外光谱、原位红外反射光谱和原位红外透射光谱方法的建立及其对界面反应的分析。

References

[1]  Scrosati B. Nature, 1995, 373: 557-558
[2]  Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[3]  Kang B, Ceder G. Nature, 2009, 458: 190-193
[4]  Scrosati B, Garche J. J. Power Scours, 2010, 195: 2419-2430
[5]  Xu K. Chem. Rev., 2004, 104: 4303-4417
[6]  倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen X T), 苏光耀(Su G Y). 化学进展(Progress in Chemistry), 2004, 16: 335-342
[7]  Yang C R, Wang Y Y, Wan C C. J. Power Sources, 1998, 72: 66-70
[8]  李君涛(Li J T). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2009
[9]  Aurbach D, Markovsky B, Shechter A, Ein-E1i Y. J. Electrochem. Soc., 1996, 143: 3809-3820
[10]  Lee S B, Pyun S I. Carbon, 2002, 40: 2333-2339
[11]  Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. Electrochim. Acta, 1999, 45: 67-86
[12]  Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. J. Power Source, 1997, 68: 91-98
[13]  Zhuang G R V, Xu K, Yang H, Jow T R, Ross P N. J. Phys. Chem. B, 2005, 109: 17567-17573
[14]  Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2OO4, 6: 126-131
[15]  Martha S K, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D. Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M. Kovacheva D, Saliyski N. J. Power Sources, 2009, 189: 288-296
[16]  Kerlau M, Kostecki R. J. Electrochem. Soc., 2006, 153: A1644-A1648
[17]  Wu C, Bai Y, Wu F. J. Power Sources, 2009, 189: 89-94
[18]  Bewick A, Kunimatsu K. Surf. Sci., 1980, 101: 131-138
[19]  Bewick A, Kunimatsu K, Pons B S. Electrochim. Acta, 1980, 25: 465-468
[20]  Sun S G, Christensen P A, Wieckowski A. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Amsterdam: Elsevier, 2007. 1-273
[21]  Neff H, Lange P, Roe D K, Sass J K. J. Electroanal. Chem., 1983, 150: 513-519
[22]  Matsui M, Dokko K, Kanamura K. J. Power Sources, 2008, 177: 184-193
[23]  Li J T, Chen S R, Fan X Y, Huang L, Sun S G. Langmuir, 2007, 23: 13174-13180
[24]  Morigaki K, Ohta A. J. Power Sources, 1998, 76: 159-166
[25]  Matsui M, Dokko K, Kanamura K. J. Electrochem. Soc., 2010, 157: A121-A129
[26]  Aurbach D, Moshkovich M, Cohen Y, Schechter A. Langmuir, 1999, 15: 2947-2960
[27]  Yeager H L, Fedyk J D, Parker R J. J. Phys. Chem., 1973, 77: 2407-2410
[28]  Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt M A, Electrochem. Solid-State Lett., 2010, 13: A32-A35
[29]  Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[30]  Li J T, Swiatowska J, Seyeux A, Huang L, Maurice V, Sun S G. Marcus P. J. Power Source, 2010, 195: 8251-8257
[31]  陈卫(Chen W), 孙世刚(Sun S G). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2002, 22: 504-514
[32]  Peled E J. Electrochem Soc., 1979, 126: 2047-2051
[33]  庄全超(Zhuang Q C), 徐守东(Xu S D), 邱祥云(Qiu X Y), 崔永丽(Cui Y L), 方亮(Fang L), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2010, 22: 1044-1057
[34]  Aurbach D, Weissman I, Schechter A. Langmiur, 1996, 12: 3991-4007
[35]  Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D. J. Power Sources, 1996, 63: 33-39
[36]  Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H. J. Electrochim. Acta, 2002, 47: 1899-1911
[37]  Chusid O Y, Ein-Ely Y, Aurbach D. J. Power Sources, 1993, 43/44: 47-64
[38]  Aurbach D, Granot E. Electrochim. Acta, 1997, 42: 697-718
[39]  Li J Z, Li H, Wang Z X, Huang X J, Chen L Q. J. Power Sources, 1999, 81/82: 346-351
[40]  Li J T, Maurice V, Swiatowska-Mrowiecka J, Seyeux A, Zanna S, Klein L, Sun S G, Marcus P. Electrochim. Acta, 2009, 54: 3700-3707
[41]  Song S W, Baek S W. Electrochim. Acta, 2009, 54: 1312-1318
[42]  Li J T, Chen S R, Ke F S, Wei G Z, Huang L, Sun S G. J. Electroanal. Chem., 2010, 694: 171-176
[43]  Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. J. Power Sources, 2001, 103: 10-17
[44]  Xu H Y, Xie S, Wang Q Y, Yao X L, Wang Q S, Chen C H. Electrochim. Acta, 2006, 52: 636-642
[45]  Santner H J, Korepp C, Winter M, Besenhard J O, Moller K C. Anal. Bioanal. Chem., 2004, 379: 266-271
[46]  Lange P, Glaw V, Neff H, Piltz E, Sass J K. Vacuum, 1983, 33: 763-766
[47]  Ashley K, Pons S. Chem. Rev., 1988, 88: 673-695
[48]  Ikezawa Y, Ariga T. Electrochim. Acta, 2007, 52: 2710-2715
[49]  Novak P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Wursig A. J. Power Sources, 2005, 146: 15-20
[50]  Morigaki K. J. Power Sources, 2002, 104: 13-23
[51]  Morigaki K. J. Power Sources, 2002, 103: 253-264
[52]  Baek S W, Hong S J, Kim D W, Song S W. J. Power Sources, 2009, 189: 660-664
[53]  Wang Y X, Balbuena P B. Int. J. Quantum Chem., 2005, 102: 724-733
[54]  Masia M, Probst M, Rey R. J. Phys. Chem. B, 2004, 108: 2016-2027
[55]  Burba C M, Frech R. Electrochim. Acta, 2006, 52: 780-785

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133