OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
低温制备掺杂氧化锆/氧化铈电解质
, PP. 470-476
Keywords: 固体氧化物燃料电池(SOFC),电解质,烧结曲线,低温
Abstract:
固体氧化物燃料电池(SOFC)及其组元的低温制备有利于材料和电池性能的优化,降低制备成本。立方相的全致密氧化钇稳定氧化锆(YSZ)电解质是SOFC中最通用的电解质。传统的烧结工艺需要在1400—1450℃才能实现YSZ电解质的致密,而使用纳米粉体和三步烧结工艺可以在1200—1300℃得到致密电解质。氧化钪稳定氧化锆(ScSZ)电解质可以使用3nm的粉体在900℃下致密化,氧化钆掺杂的氧化铈可以通过加入烧结助剂在800℃下实现致密化烧结,这些工艺已广泛用于SOFC制备。SOFC的低温制备工艺可有效推进SOFC的产业化。
References
[1] | Leng Y J, Chan S H, Khor K A, et al. J. Power Sources, 2003, 117: 26-34
|
[2] | Bao W, Chang Q, Meng G. J. Membr. Sci., 2005, 259: 103-109
|
[3] | Han M F, Yin H Y, Miao W T, et al. Solid State Ionics, 2008, 179: 1545-1548
|
[4] | Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Ltd., 2003, 103
|
[5] | Mizutani Y, Tamura M, Kawai M, et al. Solid State Ionics, 1994, 72: 271-275
|
[6] | Van Herle J, Horita T, Kawada T, et al. Solid State Ionics, 1996, 86/88: 1255-1258
|
[7] | Mori M, Suda E, Pacaud B, et al. J. Power Sources, 2006, 157: 688-694
|
[8] | Gil V, Moure C, Duran P, et al. Solid State Ionics, 2007, 178: 359-365
|
[9] | Jud E, Gauckler L J. J. Electroceram., 2005, 15: 159-166
|
[10] | Kleinlogel C, Gauckler L J. Adv. Mater., 2001, 13: 1081-1085
|
[11] | Han M F, Zhou S, Liu Z, et al. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.06.019
|
[12] | Nicholas J D, Jonghe L C D. Solid State Ionics, 2007, 178: 1187-1194
|
[13] | Esposito V, Zunic M, Traversa E. Solid State Ionics, 2009, 180: 1069-1075
|
[14] | Han M F, Liu Z, Zhou S, et al. J. Mater. Sci. Tech., 2010, in press
|
[15] | Harmer M P, Brook R J. Trans. J. Brit. Ceram. Soc., 1981, 80: 147-148
|
[16] | Chen I W, Wang X H. Nat., 2000, 404: 168-171
|
[17] | Markmann J, Tschope A, Birringer R. Acta Mater., 2002, 50: 1433-1440
|
[18] | Chen P L, Chen I W. J. Am. Ceram. Soc., 1996, 79: 3129-3141
|
[19] | Groza J R. Nanostruct. Mater., 1999, 12: 987-992
|
[20] | Jud E, Huwiler C B, Gauckler L J. J. Am. Ceram. Soc., 2005, 88: 3013-3019
|
[21] | Basu R N, Blass G. J. Eur. Ceram. Soc., 2005, 25: 463-471
|
[22] | Guo X, Waser R. Prog. Mater. Sci., 2006, 51: 151-210
|
[23] | Lewis G S, Atkinson A, Steele B C H, et al. Solid State Ionics, 2002, 152/153: 567-573
|
[24] | Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
|
[25] | Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 275-279
|
[26] | Li J G, Ikegami T, Mori T. Acta Mater., 2004, 52: 2221-2228
|
[27] | Han M F, Tang X L, Yin H Y, et al. J. Power Sources, 2007, 165: 757-763
|
[28] | Mondal P, Klein A, Jaegermann W, et al. Solid State Ionics, 1999, 119: 331-339
|
[29] | Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 451-456
|
[30] | Orui H, Watanabe K, Arakawa M. J. Power Sources, 2002, 112: 90-97
|
[31] | Han M F, Yang Z B, Liu Z, et al. Key Eng. Mater., 2010, 434/435: 705-709
|
[32] | Han M F, Tang X L, Shao W. J. Wuhan Univ. Tech. Mater. Sci., 2008, 23: 775-778
|
[33] | Han M F, Tang X L, Peng S P. Rare Met., 2006, 25: 209-212
|
[34] | Nomura K, Mizutani Y, Kawai M, et al. Solid State Ionics, 2000, 132: 235-239
|
[35] | Lei Z, Zhu Q. Solid State Ionics, 2005, 176: 2791-2797
|
[36] | Fagg D P, Kharton V V, Frade J R. J. Electroceram., 2002, 9: 199-207
|
[37] | Kleinlogel C, Gauckler L J. Solid State Ionics, 2000, 135: 567-573
|
[38] | Johnson J L, German R M. Metall. Mater. Trans. A, 1996, 72: 441-450
|
[39] | Zhang T S, Ma J, Leng Y J, et al. Solid State Ionics, 2004, 168: 187-195
|
[40] | Seo D J, Ryu K O, Park S B, et al. Mater. Res. Bull., 2006, 41: 359-366
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|