全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2011 

低温制备掺杂氧化锆/氧化铈电解质

, PP. 470-476

Keywords: 固体氧化物燃料电池(SOFC),电解质,烧结曲线,低温

Full-Text   Cite this paper   Add to My Lib

Abstract:

固体氧化物燃料电池(SOFC)及其组元的低温制备有利于材料和电池性能的优化,降低制备成本。立方相的全致密氧化钇稳定氧化锆(YSZ)电解质是SOFC中最通用的电解质。传统的烧结工艺需要在1400—1450℃才能实现YSZ电解质的致密,而使用纳米粉体和三步烧结工艺可以在1200—1300℃得到致密电解质。氧化钪稳定氧化锆(ScSZ)电解质可以使用3nm的粉体在900℃下致密化,氧化钆掺杂的氧化铈可以通过加入烧结助剂在800℃下实现致密化烧结,这些工艺已广泛用于SOFC制备。SOFC的低温制备工艺可有效推进SOFC的产业化。

References

[1]  Leng Y J, Chan S H, Khor K A, et al. J. Power Sources, 2003, 117: 26-34
[2]  Bao W, Chang Q, Meng G. J. Membr. Sci., 2005, 259: 103-109
[3]  Han M F, Yin H Y, Miao W T, et al. Solid State Ionics, 2008, 179: 1545-1548
[4]  Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Ltd., 2003, 103
[5]  Mizutani Y, Tamura M, Kawai M, et al. Solid State Ionics, 1994, 72: 271-275
[6]  Van Herle J, Horita T, Kawada T, et al. Solid State Ionics, 1996, 86/88: 1255-1258
[7]  Mori M, Suda E, Pacaud B, et al. J. Power Sources, 2006, 157: 688-694
[8]  Gil V, Moure C, Duran P, et al. Solid State Ionics, 2007, 178: 359-365
[9]  Jud E, Gauckler L J. J. Electroceram., 2005, 15: 159-166
[10]  Kleinlogel C, Gauckler L J. Adv. Mater., 2001, 13: 1081-1085
[11]  Han M F, Zhou S, Liu Z, et al. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.06.019
[12]  Nicholas J D, Jonghe L C D. Solid State Ionics, 2007, 178: 1187-1194
[13]  Esposito V, Zunic M, Traversa E. Solid State Ionics, 2009, 180: 1069-1075
[14]  Han M F, Liu Z, Zhou S, et al. J. Mater. Sci. Tech., 2010, in press
[15]  Harmer M P, Brook R J. Trans. J. Brit. Ceram. Soc., 1981, 80: 147-148
[16]  Chen I W, Wang X H. Nat., 2000, 404: 168-171
[17]  Markmann J, Tschope A, Birringer R. Acta Mater., 2002, 50: 1433-1440
[18]  Chen P L, Chen I W. J. Am. Ceram. Soc., 1996, 79: 3129-3141
[19]  Groza J R. Nanostruct. Mater., 1999, 12: 987-992
[20]  Jud E, Huwiler C B, Gauckler L J. J. Am. Ceram. Soc., 2005, 88: 3013-3019
[21]  Basu R N, Blass G. J. Eur. Ceram. Soc., 2005, 25: 463-471
[22]  Guo X, Waser R. Prog. Mater. Sci., 2006, 51: 151-210
[23]  Lewis G S, Atkinson A, Steele B C H, et al. Solid State Ionics, 2002, 152/153: 567-573
[24]  Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
[25]  Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 275-279
[26]  Li J G, Ikegami T, Mori T. Acta Mater., 2004, 52: 2221-2228
[27]  Han M F, Tang X L, Yin H Y, et al. J. Power Sources, 2007, 165: 757-763
[28]  Mondal P, Klein A, Jaegermann W, et al. Solid State Ionics, 1999, 119: 331-339
[29]  Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 451-456
[30]  Orui H, Watanabe K, Arakawa M. J. Power Sources, 2002, 112: 90-97
[31]  Han M F, Yang Z B, Liu Z, et al. Key Eng. Mater., 2010, 434/435: 705-709
[32]  Han M F, Tang X L, Shao W. J. Wuhan Univ. Tech. Mater. Sci., 2008, 23: 775-778
[33]  Han M F, Tang X L, Peng S P. Rare Met., 2006, 25: 209-212
[34]  Nomura K, Mizutani Y, Kawai M, et al. Solid State Ionics, 2000, 132: 235-239
[35]  Lei Z, Zhu Q. Solid State Ionics, 2005, 176: 2791-2797
[36]  Fagg D P, Kharton V V, Frade J R. J. Electroceram., 2002, 9: 199-207
[37]  Kleinlogel C, Gauckler L J. Solid State Ionics, 2000, 135: 567-573
[38]  Johnson J L, German R M. Metall. Mater. Trans. A, 1996, 72: 441-450
[39]  Zhang T S, Ma J, Leng Y J, et al. Solid State Ionics, 2004, 168: 187-195
[40]  Seo D J, Ryu K O, Park S B, et al. Mater. Res. Bull., 2006, 41: 359-366

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133