OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
碳纳米管/半导体纳米复合材料的光电化学特性及其应用
, PP. 1583-1590
Keywords: 碳纳米管,半导体,光电化学,协同作用
Abstract:
光电化学过程是在光作用下的电化学过程,它是光伏电池,光电催化等实际应用的基础,是当前十分活跃的研究领域。碳纳米管具有很高的热稳定性,良好的导电能力,大的比表面积,被认为是半导体纳米粒子的有效载体,其独特的一维结构可以为电子提供有效的传输路径。碳纳米管与半导体材料复合,能实现碳纳米管和半导体在结构和性能上的协同,近年来在光电化学领域受到了广泛的关注。本文基于国内外最新研究进展,结合本课题组的研究成果,综述了碳纳米管/半导体复合材料的光电协同作用机理及其在太阳能电池、光电催化降解污染物、光电协同分解水制氢领域中的应用。
References
[1] | Baughman R H, Zakhidov A A, de Heer W A, Science, 2002, 297: 787-792
|
[2] | Constantopoulos K T, Shearer C J, Ellis A V, Voelcker N H, Shapter J G. Adv. Mater., 2010, 22: 557-571
|
[3] | Ho Y M, Zheng W T, Li Y A, Liu J W, Qi J L. J. Phys. Chem. C, 2008, 112: 17702-17708
|
[4] | Zhang W D, Phang I Y, Liu T X. Adv. Mater., 2006, 18: 73-77
|
[5] | Zhang W D, Phang I Y, Shen L, Chow S Y, Liu T X. Macromol. Rapid Commun., 2004, 25: 1860-1864
|
[6] | Fan Z, Chen J H, Cui K Z, Sun F, Xu Y, Kuang Y F. Electrochim. Acta, 2007, 52: 2959-2965
|
[7] | Ye J S, Cui H F, Liu X, Lim T M, Zhang W D, Sheu F S. Small, 2005, 1: 560-565
|
[8] | Xu B, Zhang W D. Electrochim. Acta, 2010, 55: 2859-2864
|
[9] | Jiang L C, Zhang W D. Electroanalysis, 2009, 21: 1811-1815
|
[10] | Xu B, Ye M L, Yu Y X, Zhang W D. Anal. Chim. Acta, 2010, 674: 20-26
|
[11] | Chen C H, Liang Y H, Zhang W D. J. Alloy Compd., 2010, 501: 168-172
|
[12] | Wang W D, Serp P, Kalck P, Silva C G, Faria J L. Mater. Res. Bull., 2008, 43: 958-967
|
[13] | Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald M L, Nuckolls C. Angew. Chem. Int. Ed., 2009, 48: 4759-4762
|
[14] | Unalan H E, Hiralal P, Kuo D, Parekh B, Amaratunga G, Chhowalla M. J. Mater. Chem., 2008, 18: 5909-5912
|
[15] | Zhang W D, Xu B, Jiang L C. J. Mater. Chem., 2010, 20: 6383-6391
|
[16] | Jiang L C, Zhang W D. Electrochim. Acta, 2010, 56: 406-411
|
[17] | 肖信(Xiao X), 张伟德(Zhang W D). 化学进展(Prog. Chem. ), 2011, 23 (4): 657-668
|
[18] | Kongkanand A, Dominguez R M, Kamat P V. Nano Lett., 2007, 7 (3): 676-680
|
[19] | Buterfield I M, Christensen P A, Hamnett A, Shaw K E, Walker G M, Walker S A. J. Appl. Electrochem., 1997, 27 (4): 385-395
|
[20] | Quan X, Yang S, Ruan X, Zhao X. Environ. Sci. Technol., 2005, 39 (10): 3770-3775
|
[21] | Landi B J, Castro S L, Ruf H J, Evans C C M, Bailey S G, Raffaelle R P. Sol. Energy Mater. Sol. Cells, 2005, 87: 733-746
|
[22] | Hasobe T, Fukuzumi S, Kamat P V. Angew. Chem. Int. Ed., 2006, 45: 755-759
|
[23] | Fujishima A, Honda K. Nature, 1972, 238 (5358): 37-39
|
[24] | Yang X Y, Abraham W, Wang G M, Alissa S, Robert C F, Qian F, Zhang J Z, Li Y. Nano Lett., 2009, 9: 2331-2336
|
[25] | Brian C, Bjorn M, Eric M, Yan Y F, Bobby T, Kim J, Mowafak A J. J. Phys. Chem. C, 2008, 112: 5213-5220
|
[26] | Hu Y S, Alan K S, Forman A J, Daniel H, Park J N, Eric W M. Chem. Mater., 2008, 20: 3803-3805
|
[27] | Dai K, Peng T Y. Ke D N, Wei B Q. Nanotechnology, 2009, 20: art. no. 125603
|
[28] | Ou Y, Lin J D, Fang S M, Liao D W. Chem. Phys. Lett., 2006, 429: 199-203
|
[29] | Li H P, Zhang X Y, Cui X L. Chin. J. Inorg. Chem., 2009, 25 (11): 1935-1938
|
[30] | Rinzler A G, Liu J, Nikolaev P, Huffman C B. Appl. Phys. A, 1998, 67: 29-37
|
[31] | O'Regan B, Grtzel M. Nature, 1991, 353: 737-740
|
[32] | Iijima S. Nature, 1991, 354: 56-58
|
[33] | Kim Y T, Tadai K, Mitani T. J. Mater. Chem., 2005, 15: 4914-4921
|
[34] | Zhang W D, Chen J. Pure Appl. Chem., 2009, 81: 2317-2325
|
[35] | Jang L C, Zhang W D. Biosens. Bioelectron., 2010, 25: 1402-1407
|
[36] | Chen J, Zhang W D, Ye J S. Electrochem. Commun., 2008, 10: 1268-1271
|
[37] | Gao B, Chen G Z, Puma G L. Appl. Catal. B, 2009, 89: 503-509
|
[38] | Wang W D, Serp P, Kalck P, Silva C G, Faria J L. J. Mol. Catal. A: Chem., 2005, 235: 194-199
|
[39] | Gao B, Chen G Z, Puma G L. Appl. Catal. B, 2009, 89: 503-509
|
[40] | Zhang W D, Jiang L C, Ye J S. J. Phys. Chem. C, 2009, 113: 16247-16253
|
[41] | Deepa M, Gakhar R, Joshi A G, Singh B P, Srivastava A K. Electrochim. Acta, 2010, 55: 6731-6742
|
[42] | Kongkanand A, Kamat P V. ACS Nano, 2006, 1 (1): 13-21
|
[43] | Jang S R, Vittal R, Kim K J. Langmuir, 2004, 20: 9807-9810
|
[44] | Lee T Y, Alegaonkar P S, Yoo J B. Thin Solid Films, 2007, 515: 5131-5135
|
[45] | Lee K M, Hu C W, Chen H W, Ho K C. Sol. Energy Mater. Sol. Cells, 2008, 92: 1628-1633
|
[46] | Lee W, Lee J, Lee S, Yi W, Han S H, Cho B W. Appl. Phys. Lett., 2008, 92 (15): 152510-152513
|
[47] | Lee H J, Yoon S W, Kim E J, Park J. Nano Lett., 2007, 3 (7): 778-784
|
[48] | Shu Q K, Wei K J, K L Wang, Zhu H W, Li Z, Jia Y, Gui X C, Guo N, Li X M, Ma C, Wu D H. Nano Lett., 2009, 12 (9): 4338-4342
|
[49] | 李达钱(Li D Q), 陈金媛(Chen J Y). 浙江工业大学学报 (Journal of Zhejiang University of Technology), 2006, 34 (4): 369-372
|
[50] | Jiang G D, Lin Z F, Zhu L H, Ding Y B, Tang H Q. Carbon, 2010, 48: 3369-3375
|
[51] | 李家麟(Li J L), 方涛(Fang T), 李晓勤(Li X Q), 罗永松(Luo Y S). 华中师范大学学报 (Journal of Central China Normal University), 2005, 39 (4): 505-508
|
[52] | Zhang F J, Chen M L, Wu W C. New Carbon Mater., 2010, 25 (5): 348-356
|
[53] | Alexander J C, Tang J W, Leng W H, James R D, David R K. J. Phys. Chem. C, 2010, 114: 4208-4214
|
[54] | Park J, Choi W Y. J. Phys. Chem. C, 2009, 113: 20974-20979
|
[55] | Wu R J, Ju Y D, Jeng C C. J. Nanosci. Nanotechnol., 2010, 10 (7): 4213-4220
|
[56] | Bandow S, Rao A M, Williams K A, Thess A, Smalley R E, Eklund P C. J. Phys. Chem. B, 1997, 101: 8839-8842
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|