全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2013 

太阳能光解水的光阳极材料

DOI: 10.7536/PC130504, PP. 1989-1998

Keywords: 光电化学池,光电催化,半导体,光阳极,水分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

光电化学(PEC)分解水制氢将太阳能转化成化学能,被认为有望替代化石能源而成为人类获取能源的最主要方式之一,受到人们的普遍关注。通过各种方法寻找和研究有应用潜力的半导体材料是该领域目前的重要研究方向。本文系统地评述了国内外最受关注的一些半导体材料在光电化学分解水制氢方面的研究进展,主要包括TiO2,α-Fe2O3,BiVO4,WO3和TaON;总结了改善光阳极半导体光电化学性能的策略,包括元素掺杂、形貌控制、表面修饰(包覆钝化层与担载共催化剂)和构建异质结。

References

[1]  Iwashina K, Kudo A. J. Am. Chem. Soc., 2011, 133: 13272—13275
[2]  Yousefi M, Amiri M, Azimirad R, Moshfegh A Z. J. Electroanal. Chem., 2011, 661: 106—112
[3]  Xu Z, Zheng Q, Su G. Phys. Rev. B, 2012, 85: art. no. 075402
[4]  Li Z, Luo W, Zhang M, Feng J, Zou Z. Energy Environ. Sci., 2013, 6: 347—370
[5]  Li J, Zhang J Z. Coord. Chem. Rev., 2009, 253: 3015—3041
[6]  Park Y, McDonald K J, Choi K S. Chem. Soc. Rev., 2013, 42: 2321—2337
[7]  Santra P K, Kamat P V. J. Am. Chem. Soc., 2012, 134: 2508—2511
[8]  Dong L, Zhang X, Dong X, Zhang X, Ma C, Ma H, Xue M, Shi F. J. Colloid Interface Sci., 2013, 393: 126—129
[9]  Xie Q, Wang J, Zhou A, Zhang Y, Liu H, Xu Z, Yuan Y, Deng M, Yao S. Anal. Chem., 1999, 71: 4649—4656
[10]  Wang T, Fu Y, Bu L, Qin C, Meng Y, Chen C, Ma M, Xie Q, Yao S. J. Phys. Chem. C, 2012, 116: 20908—20917
[11]  Huang Z, Liu Y, Xie F, Fu Y, He Y, Ma M, Xie Q, Yao S. Chem. Commun., 2012, 48: 12106—12113
[12]  Kuwabata S, Kishimoto A, Yoneyama H. J. Electroanal. Chem., 1994, 377: 261—268
[13]  Si S, Huang K, Wang X, Huang M, Chen H. Thin Solid Films, 2002, 422: 205—210
[14]  Schrebler R, Llewelyn C, Vera F, Cury P, Mu?oz E, del Río R, Meier H G, Córdova R, Dalchiele E A. Electrochem. Solid-State Lett., 2007, 10: D95—D99
[15]  程萍(Cheng P), 顾明元(Gu M Y), 金燕苹(Jin Y P). 化学进展(Progress in Chemistry), 2005, 17: 8—14
[16]  Roy P, Das C, Lee K, Hahn R, Ruff T, Moll M, Schmuki P. J. Am. Chem. Soc., 2011, 133: 5629—5631
[17]  Das C, Roy P, Yang M, Jha H, Schmuki P. Nanoscale, 2011, 3: 3094—3096
[18]  Dholam R, Patel N, Santini A, Miotello A. Int. J. Hydrogen Energy, 2010, 35: 9581—9590
[19]  Pan H, Zhang Y W, Shenoy V B, Gao H. J. Phys. Chem. C, 2011, 115: 12224—12231
[20]  Cheng C W, Sun Y. Appl. Surf. Sci., 2012, 263: 273—278
[21]  Chen X, Burda C. J. Am. Chem. Soc., 2008, 130: 5018—5019
[22]  Ma X, Wu Y, Lu Y, Xu J, Wang Y, Zhu Y. J. Phys. Chem. C, 2011, 115: 16963—16969
[23]  Wheeler D A, Wang G, Ling Y, Li Y, Zhang J Z. Energy Environ. Sci., 2012, 5: 6682—6702
[24]  Ling Y, Wang G, Wheeler D A, Zhang J Z, Li Y. Nano Lett., 2011, 11: 2119—2125
[25]  Brillet J, Gr?tzel M, Sivula K. Nano Lett., 2010, 10: 4155—4160
[26]  Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gr?tzel M. J. Am. Chem. Soc., 2010, 132: 7436—7444
[27]  Kay A, Cesar I, Gr?tzel M. J. Am. Chem. Soc., 2006, 128: 15714—15721
[28]  Tilley S D, Cornuz M, Sivula K, Graumltzel M. Angew. Chem. Int. Ed., 2010, 49: 6405—6412
[29]  Wang G, Ling Y, Wheeler D A, George K E N, Horsley K, Heske C, Zhang J Z, Li Y. Nano Lett., 2011, 11: 3503—3509
[30]  Cesar I, Sivula K, Kay A, Zboril R, Graetzel M. J. Phys. Chem. C, 2009, 113: 772—782
[31]  Zhong D K, Choi S, Gamelin D R. J. Am. Chem. Soc., 2011, 133: 18370—18377
[32]  Luo W, Li Z, Yu T, Zou Z. J. Phys. Chem. C, 2012, 116: 5076—5081
[33]  Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147—3151
[34]  杜俊平(Du J P), 李洁(Li J), 陈启元(Chen Q Y). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2007, 17: 1695—1700
[35]  赵娟(Zhao J), 刘士军(Liu S J), 李洁(Li J), 陈启元(Chen Q Y). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2008, 18: 330—335
[36]  Zhang Z, Wang P. Energy Environ. Sci., 2012, 5: 6506—6512
[37]  Butler M A. J. Appl. Phys., 1977, 48: 1914—1920
[38]  Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Wang C, Zhang J Z, Li Y. Nano Lett., 2011, 11: 3026—3033
[39]  Hoang S, Guo S W, Hahn N T, Bard A J, Mullins C B. Nano Lett., 2012, 12: 26—32
[40]  Arakawa H, Shiraishi C, Tatemoto M, Kishida H, Usui D, Suma A, Takamisawa A, Yamaguchi T. Proc. SPIE-Int. Soc. Opt. Eng., 2007, 6650: art. no. 665003
[41]  Nakagawa T, Beasley C A, Murray R W. J. Phys. Chem. C, 2009, 113: 12958—12961
[42]  Pilli S K, Deutsch T G, Furtak T E, Turner J A, Brown L D, Herring A M. Phys. Chem. Chem. Phys., 2012, 14: 7032—7039
[43]  Abdi F F, van de Krol R. J. Phys. Chem. C, 2012, 116: 9398—9404
[44]  Abdi F F, Firet N, van de Krol R. ChemCatChem, 2013, 5: 490—496
[45]  Wang Y B, Wang Y S, Jiang R R, Xu R. Ind. Eng. Chem. Res., 2012, 51: 9945—9951
[46]  Seabold J A, Choi K S. Chem. Mater., 2011, 23: 1105—1112
[47]  Pendlebury S R, Barroso M, Cowan A J, Sivula K, Tang J, Graetzel M, Klug D, Durrant J R. Chem. Commun., 2011, 47: 716—718
[48]  Barroso M, Cowan A J, Pendlebury S R, Gr?tzel M, Klug D R, Durrant J R. J. Am. Chem. Soc., 2011, 133: 14868—14871
[49]  Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann T W. J. Am. Chem. Soc., 2012, 134: 16693—16700
[50]  Riha S C, Klahr B M, Tyo E C, Seifert S, Vajda S, Pellin M J, Hamann T W, Martinson A B F. ACS Nano, 2013, 7: 2396—2405
[51]  Chen D, Zhang H, Liu Y, Li J. Energy Environ. Sci., 2013, 6: 1362—1387
[52]  Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Chem. Mater., 2001, 13: 2765—2782
[53]  Su J, Guo L, Bao N, Grimes C A. Nano Lett., 2011, 11: 1928—1933
[54]  Kim E S, Nishimura N, Kim J Y, Jang J W, Jun H, Kubota J, Domen K, Lee J S. J. Am. Chem. Soc., 2013, 135: 5375—5383
[55]  Sivula K, Le Formal F, Graetzel M. ChemSusChem, 2011, 4: 432—449
[56]  Fujishima A, Honda K. Nature, 1972, 238: 37—38
[57]  Xu M, Da P, Wu H, Zhao D, Zheng G. Nano Lett., 2012, 12: 1503—1508
[58]  Liang S, He J, Sun Z, Liu Q, Jiang Y, Cheng H, He B, Xie Z, Wei S. J. Phys. Chem. C, 2012, 116: 9049—9053
[59]  Townsend T K, Browning N D, Osterloh F E. ACS Nano, 2012, 6: 7420—7426
[60]  Shimizu K, Itoh S, Hatamachi T, Kodama T, Sato M, Toda K. Chem. Mater., 2005, 17: 5161—5166
[61]  Swierk J R, Mallouk T E. Chem. Soc. Rev., 2013, 42: 2357—2387
[62]  Liu Y, Li Y, Li W, Han S, Liu C. Appl. Surf. Sci., 2012, 258: 5038—5045
[63]  Tran P D, Wong L H, Barber J, Loo J S C. Energy Environ. Sci., 2012, 5: 5902—5918
[64]  Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O. J. Am. Chem. Soc., 2013, 135: 4596—4599
[65]  王光丽(Wang G L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 中国科学(Scientia Sinica Chimica), 2009, 39: 1336—1347
[66]  Buttry D A, Ward M D. Chem. Rev., 1992, 92: 1355—1379
[67]  Janshoff A, Galla H J, Steinem C. Angew. Chem. Int. Ed., 2000, 39: 4004—4032
[68]  Marx K A. Biomacromolecules, 2003, 4: 1099—1120
[69]  Cao J, Zhang Y, Tong H, Li P, Kako T, Ye J. Chem. Commun., 2012, 48: 8649—8651
[70]  Ye H, Lee J, Jang J S, Bard A J. J. Phys. Chem. C, 2010, 114: 13322—13328
[71]  Park H S, Kweon K E, Ye H, Paek E, Hwang G S, Bard A J. J. Phys. Chem. C, 2011, 115: 17870—17879
[72]  Li W, Li J, Wang X, Chen Q Y. Appl. Surf. Sci., 2012, 263: 157—162
[73]  Sun Y P, Rajpura R, Raftery D. Proc. SPIE-Int. Soc. Opt. Eng., 2009, 7408: 74080—74087
[74]  Jiang H, Meng X, Dai H, Deng J, Liu Y, Zhang L, Zhao Z, Zhang R. J. Hazard. Mater., 2012, 217: 92—99
[75]  Chen L, Zhang Q, Huang R, Yin S F, Luo S L, Au C T. Dalton Trans., 2012, 41: 9513—9518
[76]  Kim J K, Shin K, Cho S M, Lee T W, Park J H. Energy Environ. Sci., 2011, 4: 1465—1470
[77]  Abe R, Higashi M, Domen K. J. Am. Chem. Soc., 2010, 132: 11828—11829
[78]  Zhou W, Yang X, Huang L, Wang J, Tang J, Liang H. Chem. Eur. J., 2012, 18: 5367—5373
[79]  Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Nature, 2008, 453: 638—641
[80]  Liu G, Yu J C, Lu G Q, Cheng H M. Chem. Commun., 2011, 47: 6763—6783
[81]  Pan J, Liu G, Lu G Q, Cheng H M. Angew. Chem. Int. Ed., 2011, 50: 2133—2139
[82]  Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Nature commun., 2013, 4: art. no. 1432
[83]  Zhang P, Kleiman-Shwarsctein A, Hu Y S, Lefton J, Sharma S, Forman A J, McFarland E. Energy Environ. Sci., 2011, 4: 1020—1028
[84]  Zhu J, Yin Z, Yang D, Sun T, Yu H, Hoster H E, Hng H H, Zhang H, Yan Q. Energy Environ. Sci., 2013, 6: 987—993
[85]  Le Formal F, Sivula K, Gr?tzel M. J. Phys. Chem. C, 2012, 116: 26707—26720
[86]  Barroso M, Mesa C A, Pendlebury S R, Cowan A J, Hisatomi T, Sivula K, Graetzel M, Klug D R, Durrant J R. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 15640—15645
[87]  Le Formal F, Tetreault N, Cornuz M, Moehl T, Gr?tzel M, Smila K. Chem. Sci., 2011, 2: 737—743
[88]  Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tetreault N, Sivula K, Graetzel M. Energy Environ. Sci., 2011, 4: 2512—2515
[89]  Chemelewski W D, Hahn N T, Mullins C B. J. Phys. Chem. C, 2012, 116: 5256—5262
[90]  Franking R, Li L, Lukowski M A, Meng F, Tan Y, Hamers R J, Jin S. Energy Environ. Sci., 2013, 6: 500—512
[91]  Kiwi J, Gr?tzel M. Angew. Chem. Int. Ed., 1978, 17: 860—861
[92]  Nakagawa T, Bjorge N S, Murray R W. J. Am. Chem. Soc., 2009, 131: 15578—15579
[93]  Kanan M W, Nocera D G. Science, 2008, 321: 1072—1076
[94]  Bledowski M, Wang L, Ramakrishnan A, Beranek R. J. Mater. Res., 2013, 28: 411—417
[95]  Zhong D K, Gamelin D R. J. Am. Chem. Soc., 2010, 132: 4202—4207
[96]  McDonald K J, Choi K S. Chem. Mater., 2011, 23: 1686—1693
[97]  Ye H, Park H S, Bard A J. J. Phys. Chem. C, 2011, 115: 12464—12470
[98]  Zhong D K, Cornuz M, Sivula K, Graetzel M, Gamelin D R. Energy Environ. Sci., 2011, 4: 1759—1764
[99]  Steinmiller E M P, Choi K S. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 20633—20636
[100]  McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. J. Am. Chem. Soc., 2010, 132: 6882—6883
[101]  Cowan A J, Barnett C J, Pendlebury S R, Barroso M, Sivula K, Gr?tzel M, Durrant J R, Klug D R. J. Am. Chem. Soc., 2011, 133: 10134—10140
[102]  Kim H G, Borse P H, Jang J S, Jeong E D, Jung O S, Suh Y J, Lee J S. Chem. Commun., 2009, 5889—5891
[103]  Kim H G, Borse P H, Choi W, Lee J S. Angew. Chem. Int. Ed., 2005, 44: 4585—4589
[104]  Hong S J, Lee S, Jang J S, Lee J S. Energy Environ. Sci., 2011, 4: 1781—1787
[105]  Sivula K, Formal F L, Gra?tzel M. Chem. Mater., 2009, 21: 2862—2867
[106]  McDonald K J, Choi K S. Chem. Mater., 2011, 23: 4863—4869
[107]  Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C. ACS Appl. Mater. Interfaces, 2012, 4: 4428—4433
[108]  Liang Y, Tsubota T, Mooij L P A, van de Krol R. J. Phys. Chem. C, 2011, 115: 17594—17598
[109]  Pilli S K, Deutsch T G, Furtak T E, Brown L D, Turner J A, Herring A M. Phys. Chem. Chem. Phys., 2013, 15: 3273—3278
[110]  Ng J, Xu S, Zhang X, Yang H Y, Sun D D. Adv. Funct. Mater., 2010, 20: 4287—4294

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133