全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

预处理技术在生物质热化学转化中的应用

DOI: 10.7536/PC130602, PP. 203-213

Keywords: 预处理,气化,热裂解,液化

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着化石燃料的不断消耗和气候的变化,生物质能作为一种可再生能源越来越受到关注。生物质可以通过生物法和热化学法转化成有用的燃料,热化学转化技术因其可以将生物质高效地转化生成气体、液体和固体燃料使其占有主导地位。对生物质进行预处理可以改变其物理化学特性,并且这些改变影响着后期热化学转化生物质产品的品质和收率。本文综述了生物质预处理技术在热化学转化技术方面的应用进展。对生物质进行烘焙预处理改变其可磨性,疏水性。生物质热裂解之前对原料进行脱灰分减少了生物质中的灰分,改变了生物质热裂解液化的产品分布。预处理液化相对直接高压液化生物油收率大大提高,同时最优化反应温度也大大降低。

References

[1]  Pu Y, Zhang D, Singh P M, Ragauskas A J. Biofuel. Bioprod. Bior., 2: 58.
[2]  Mazaheri H, Lee K T, Bhatia S, Mohamed A R. Bioresour. Technol., 2010, 101: 745.
[3]  Harun R, Danquah M K. Process Biochem., 2011, 46: 304.
[4]  Akin D E, Rigsby L L, Sethuraman A, Morrison W H, Gamble G R, Eriksson K E. Appl. Environ. Microbiol., 1995, 61: 1591.
[5]  Rabelo S C, Filho R M, Costa A C. Appl. Biochem. Biotechnol., 2009, 153: 139.
[6]  Zhang J, Ma X, Yu J, Zhang X, Tan T. Bioresour. Technol., 2011, 102: 4585.
[7]  Liu C G, Wyman C E. Ind. Eng. Chem. Res., 2004, 43: 2781.
[8]  Taherzadeh M J, Karimi K. Bioresources, 2007, 2: 707.
[9]  Carvalheiro F, Duarte L C, Girio F M. J. Sci. Ind. Res., 2008, 67: 849.
[10]  Sun Y, Cheng J. Bioresour. Technol., 2002, 83: 1.
[11]  Lu W, Wang W, Yang Z. Bioresour. Technol., 2009, 100: 6451.
[12]  Liu Z, Zhang F S. Energ. Convers. Manage., 2009, 49: 3498.
[13]  Demirbas A. Energy Convers. Manage., 2001, 42: 1357.
[14]  Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Bioresour. Technol., 2011, 102: 3380.
[15]  Ptasinski K J. Biofuels, Bioprod. Biorefin., 2008, 2: 239.
[16]  Bridgewater A V. Fuel, 1995, 74: 631.
[17]  Devi L, Ptansinski K J, Janssen F G. Biomass Bioenerg., 2003, 24: 125.
[18]  Chen Q, Zhou J S, Liu B J, Mei Q F, Luo Z Y. 2011, 56: 1450.
[19]  Svoboda K, Pohorel M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[20]  Chen W H, Tu Y J, Sheen H K. Int. J. Energ. Res., 2010, 34: 265.
[21]  Antal M J. Advances in Solar Energy, 1983, 11: 61.
[22]  Bridgeman T G, Jones J M, Shield I, Williams P T. Fuel, 2008, 87: 844.
[23]  Ciolkosz K, Wallace R. Biofuels, Bioprod. Biorefin., 2011, 5: 317.
[24]  Chen W H, Hsu H C, Lu K M, Lee W J, Lin T C. Energy, 2011, 36: 3012.
[25]  Prins M J, Ptasinski K J, Janssen F G. 2006, J. Anal. Appl. Pyrol., 77: 28.
[26]  Prins M J, Ptasinski K J, Janssen F G. J. Anal. Appl. Pyrol., 2006, 77: 35.
[27]  Couhert C, Salvador S, Commandré J M. Fuel, 2009, 88: 2286.
[28]  Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M. Chem. Rev., 2010, 110: 3552.
[29]  Yang X, Zeng Y, Ma F, Zhang X, Yu H. Bioresour. Technol., 2010, 101: 5475.
[30]  Das P, Ganesh A, Wangikar P. Biomass Bioenerg., 2004, 27: 445.
[31]  Misson M, Haron R, Kamaroddin F M A, Amin N A S. Bioresour. Technol., 2009, 100: 2867.
[32]  Hammerschmidt A, Boukis N, Hauer E, Galla U, Dinjus E, Hitzmann B, Larsen T, Nygaard S D. Fuel, 2011, 90: 555.
[33]  Demirbas A. Energ. Convers. Manage., 2000, 41: 633.
[34]  Wan C, Li Y. Enzyme Microb. Tech., 2010, 47: 31.
[35]  Sun R C, Fang J M, Tomkinson J. Ind. Crop. Prod., 2000, 12: 71.
[36]  Liu H M, Feng B, Sun R C. Ind. Eng. Chem. Res., 2011, 50: 10928.
[37]  Liu H M, Feng B, Sun R C. J. Agr. Food Chem., 2011, 59: 10524.
[38]  Liu H M, Li M F, Cao X F, Sun R C. Energy Technology, 2013, 1: 70.
[39]  Shi W, Li S, Jia J, Zhao Y. Ind. Eng. Chem. Res., 2013, 52: 586.
[40]  Shi W, Jia J, Guo Y, Zhao Y. Bioresour. Technol., 2013, 146: 355.
[41]  Li J, Wu L, Yang Z. J. Anal. Appl. Pyrol., 2008, 81: 199.
[42]  Blanca A L, Juan L T G. Biofuel. Bioprod. Bior., 2008, 2: 455.
[43]  Zhang X, Xu M, Sun R, Sun L. J. Eng. Gas Turbines Power, 2006, 128: 493.
[44]  Hsu T A, Ladisch M R, Tsao G T. Chemical Technology, 1980, 10: 315.
[45]  Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K. Bioresour. Technol., 2011, 102: 4793.
[46]  Fan H, Ragauskas A. Bioenerg. Res., 2012, 5: 1043.
[47]  Wyman C E, Balan V, Dale B E, Elander R T, Falls M, Hames B, Holtzapple M T, Ladisch M R, Lee Y Y, Mosier N, Pallapolu V R, Shi J, Thomas S R, Warner R E. Bioresour. Technol., 2011, 102: 11052.
[48]  Foston M, Ragauskas A J. Biomass Bioenerg., 2010, 34: 1885.
[49]  Russell J B. J. Appl. Bacteriol., 1992, 73: 363.
[50]  Liu Z L, Slininger P J, Gorsich S W. Appl. Biochem. Biotechnol., 2005, 121/124: 451.
[51]  Van Walsum G P, Allen S G, Spencer M J, Laser M S, Antal M J, Lynd L R. Appl. Biochem. Biotechnol., 1996, 57/58: 157.
[52]  Jacobsen S E, Wyman C E. Ind. Eng. Chem. Res., 2002, 41: 1454.
[53]  Yu Y, Wu H W. Ind. Eng. Chem. Res., 2010, 49: 3902.
[54]  Zheng Y, Pan Z, Zhang R. J. Agric. Biol. Eng., 2009, 2: 51.
[55]  Pimchuai A, Dutta A, Basu P. Energ. Fuel, 2010, 24: 4638.
[56]  Prins M J, Ptasinski K J. Energy, 2005, 30: 982.
[57]  Prins M J, Ptasinski K J, Janssen F G. Energy, 2006, 31: 3458.
[58]  van der Stelt M J C, Gerhauser H, Kiel J H A, Ptasinski K J. Biomass Bioenerg., 2011, 35: 3748.
[59]  Deng J, Wang G J, Kuang J H, Zhang Y L, Luo Y H. J. Anal. Appl. Pyrol., 2009, 86: 331.
[60]  Arias B, Pevida C, Fermoso J, Plaza M G, Rubiera F, Pis J J. Fuel Process. Technol., 2008, 89: 169.
[61]  Gomez L D, Steele-King C, McQueen-Mason S J. New Phytol., 2008, 178: 473.
[62]  Chen W H, Kuo P C. Energy, 2010, 35: 2580.
[63]  Chen W H, Wu J S. Energy, 2009, 34: 1458.
[64]  Mansaray K G, Ghaly A E. Bioresour. Technol., 1998, 65: 13.
[65]  Acharya B, Sule I, Dutta A. Biomass Conv. Bioref., 2012, 2: 349.
[66]  Uslu A, Faaij A P C, Bergman P C A. Energy, 2008, 33: 1206.
[67]  Rousset P, Davrieux F, Macedo L, Perré P. Biomass Bioenerg., 2011, 35: 1219.
[68]  Chen W H, Hsu H C, Lu K M, Huang Y P A. Appl. Energ., 2011, 88: 3636.
[69]  Svoboda K, Poho D?ely M, Hartman M, Martinec J. Fuel Process. Technol., 2009, 90: 629.
[70]  Zwart R W J, Boerrigter H, Drift A V D. Energ. Fuel., 2006, 20: 2192.
[71]  Uslu A, Faaij A, Bergman P C A. Energy, 2008, 33: 1206.
[72]  Carlson T R, Cheng Y T, Jae J, Huber G W. Energ. Environ. Sci., 2011, 4: 145.
[73]  Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. J. Catal., 2010, 270: 110.
[74]  Li X Y, Su L, Wang Y J, Yu Y Q, Wang C W, Li X L, Wang Z H. Environ. Sci. Eng., 2012, 6: 1079.
[75]  Mihalcik D J, Mullen C A, Boateng A A. J. Anal. Appl. Pyrol., 2011, 92: 224.
[76]  Mullen C A, Boateng A A. Fuel Process. Technol., 2010, 91: 1446.
[77]  Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12: 1493.
[78]  Tan H, Wang S R. J. Fuel Chem. Technol., 2009, 37: 668.
[79]  Aguado J, Serrano D P, Miguel G S, Castro M C, Madrid S. J. Anal. Appl. Pyrol., 2006, 79: 415.
[80]  Boateng A A, Hicks K B, Flores R A, Gutsol A. J. Anal. Appl. Pyrol., 2006, 78: 95.
[81]  Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96: 673.
[82]  Johnson R L, Liaw S S, Garcia-Perez M, Ha S, Sean S Y L, Armando G M, Chen S. Energ. Fuel., 2009, 23: 6242.
[83]  Zeng Y, Yang X, Yu H, Zhang X, Ma F. J. Agr. Food Chem., 59: 9965.
[84]  Yu Y, Zeng Y, Zuo J, Ma F, Yang X, Zhang X, Wang Y. Bioresour. Technol., 2013, 134: 198.
[85]  Liu H M, Xie X A, Li M F, Sun R C. J. Ana. App. Pyrol., 2012, 94: 177.
[86]  Makabe M, Ouchi K. Fuel, 1981, 60: 443.
[87]  Grierer J. Wood Sci. Technol., 1986, 19: 289.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133