全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

铋系半导体光催化剂的光催化性能调控

DOI: 10.7536/PC130770, PP. 30-40

Keywords: 铋系光催化剂,形貌结构,半导体复合,性能调控

Full-Text   Cite this paper   Add to My Lib

Abstract:

铋系光催化剂具有良好的光催化性能,由于其Bi6s和O2p的轨道杂化,提高了价带的位置,从而减小了禁带宽度,使得铋系光催化剂在可见光范围内具有明显的吸收,已成为近年来光催化领域研究的热点。铋系光催化剂在可见光区的光催化活性虽然比传统的TiO2有明显的提高,但其量子效率不高,光生电子-空穴容易结合,对可见光的吸收有限等问题,使其离实际应用仍存在较大的距离。因此,必须采取合适的措施来提高铋系催化剂的光生载流子速率,抑制光生电子-空穴复合,增强对可见光的吸收。本文主要综述了近年来在铋系半导体光催化剂光催化性能调控方面的最新研究进展,重点就铋系半导体光催化剂的形貌控制、特殊晶面暴露、贵金属沉积、离子掺杂、非金属掺杂、半导体复合等方面进行分析和总结,并对铋系半导体光催化剂的发展方向进行展望。

References

[1]  Fujishima A, Honda K. Nature, 1972, 238: 37.
[2]  Fujihira M, Satoh Y, Osa T. Nature, 1981, 293: 206.
[3]  Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Envrion. Sci. Technol., 1998, 32: 726.
[4]  Konstantinou I K, Albanis T A. Appl. Catal. B: Environ., 2004, 49: 1.
[5]  Zhao X, Xu T G, Yao W G, Zhang C, Zhu Y F. Appl. Catal. B: Environ., 2007, 72: 92.
[6]  Brezesinski K, Ostermann R, Hartmann P, Perlich J, Brezesinski T. Chem. Mater., 2010, 22: 3079.
[7]  Wang C H, Shao C L, Wang L J, Zhang L N, Li X H, Liu Y C. J. Colloid. Interf. Sci., 2009, 333: 242.
[8]  Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[9]  Xiao X, Zhang W D. J. Mater. Chem., 2010, 20: 5866.
[10]  Ren J, Wang W Z, Zhang L, Chang J, Hu S. Catal. Commun., 2009, 10: 1940.
[11]  Zou Z G, Ye J H, Arakawa H. Mater. Sci. Eng. B, 2001, 79: 83.
[12]  Tang J W, Zou Z G, Ye J H. Angew. Chem. Int. Ed., 2004, 43: 4463.
[13]  Xia Y N, Yang P D, Sun Y G, Wu Y Y, Mayers B, Gates B, Yin Y D, Kim E, Yan Y Q. Adv. Mater., 2003, 15: 353.
[14]  Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Chem. Eur. J., 2009, 15: 1776.
[15]  Cheng H F, Huang B B, Lu J B, Wang Z Y, Xu B, Qin X Y, Zhang X Y, Dai Y. Phys. Chem. Chem. Phys., 2010, 12: 15468.
[16]  Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[17]  Zhou L, Wang W Z, Zhang L S, Xu H L, Zhu W. J. Phys. Chem. C, 2007, 111: 13659.
[18]  Ren L, Jin L, Wang J B, Yang F, Qiu M Q, Yu Y. Nanotechnology, 2009, 20: 115603.
[19]  Yin W Z, Wang W Z, Shang M, Zhou L, Sun S M, Wang L. Eur. J. Inorg. Chem., 2009, 4379.
[20]  Sun Y F, Wu C Z, Long R, Cui Y, Zhang S D, Xie Y. Chem. Commun., 2009, 4542.
[21]  Sun S M, Wang W Z, Zhou L, Xu H L. Ind. Eng. Chem. Res., 2009, 48: 1735.
[22]  Zhang Z J, Wang W Z, Shang M, Yin W Z. J. Hazard. Mater., 2010, 177: 1013.
[23]  Zhou L, Wang W Z, Zhang L S. J. Mol. Catal., 2007, 268: 195.
[24]  Alfaro S O, Martínez-de la Cruz A. Appl. Catal. A, 2010, 383: 128.
[25]  Cheng H F, Huang B B, Yang K S, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Phys. Chem., 2010, 11: 2167.
[26]  Zhao T Y, Zai J T, Xu M, Zou Q, Su Y Z, Wang K X, Qian X F. CrystEngComm, 2011, 13: 4010.
[27]  Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[28]  Kong L D, Chen H H, Hua W M, Zhang S C, Chen J M. Chem. Commun., 2008, 4977.
[29]  Li G S, Zhang D Q, Yu J C. Chem. Mater., 2008, 20: 3983.
[30]  Sun Y F, Xie Y, Wu C Z, Zhang S D, Jiang S S. Nano Res., 2010, 3: 620.
[31]  Ge L. J. Mol. Catal. A: Chem., 2008, 282: 62.
[32]  Ge L. Mater. Chem. Phys., 2008, 107: 465.
[33]  Gurunathan K. Int. J. Hydrogen Energ., 2004, 29: 933.
[34]  Yao W, Iwai H, Ye J. Dalton Trans., 2008, 1426.
[35]  Chatchai P, Murakami Y, Kishioka S, Nosaka A Y, Nosaka Y. Electrochim. Acta, 2009, 54: 1147.
[36]  Zhang A, Zhang J. J. Hazard. Mater., 2010, 173: 265.
[37]  Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater. Chem. Phys., 2010, 119: 106.
[38]  Zhang Y, Yu J Q, Wang H W, Sun M M, Bu Y Y, Yu D S, Li W B. J. Nanotechnol., 2011, 2011: 702130.
[39]  Dong F, Sun Y J, Fu M, Ho W K, Lee S C, Wu Z B. Langmuir, 2012, 28: 766.
[40]  Song S Y, Wei G, Wang X, Li X Y, Liu D P, Xing Y, Zhang H J. Dalton Trans., 2012, 41: 10472.
[41]  Tu X M, Luo S L, Chen G X, Li J H. Chem. Eur. J., 2012, 18: 14359.
[42]  Cheng H F, Huang B B, Wang P, Wang Z Y, Lou Z Z, Wang J P, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2011, 47: 7054.
[43]  Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett A I, Chen J. ACS Appl. Mater. Interfaces, 2012, 4: 3718.
[44]  Ke D N, Peng T Y, Ma L, Cai P, Jiang P. Appl. Catal. A: Gen., 2008, 350: 111.
[45]  Cheng H F, Huang B B, Liu Y Y, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 9729.
[46]  Zhang L, Chen D R, Jiao X L. J. Phys. Chem. B, 2006, 110: 2668.
[47]  YU J, Kudo A. Adv. Funct. Mater., 2006, 16: 2163.
[48]  Fu H B, Zhang L W, Yao W Q, Zhu Y F. Appl. Catal. B: Environ., 2006, 66: 100.
[49]  Shimodaira Y, Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2006, 110: 17790.
[50]  Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[51]  Yao W F, Wang H, Xu X H, Cheng X F, Huang J, Shang S X, Yang X N, Wang M. Appl. Catal. A: Gen., 2003, 243: 185.
[52]  Wang Z L, Song J H. Science, 2006, 312: 242.
[53]  Zhao Y, Xie Y, Zhu X, Yan S, Wang S X. Chem. Eur. J., 2008, 14: 1601.
[54]  Zheng Y, Wu J, Duan F, Xie Y. Chem. Lett., 2007, 36: 520.
[55]  Kudo A, Hijii S. Chem. Lett., 1999, 1103.
[56]  Zhang G K, Lü F, Li M, Yang J L, Zhang X Y, Huang B B. J. Phys. Chem. Solids, 2010, 71: 579.
[57]  Zhang L S, Wang W Z, Chen Z G, Zhou L, Xu H L, Zhu W. J. Mater. Chem., 2007, 17: 2526.
[58]  Zhang L S, Wang W Z, Zhou L, Xu H L. Small, 2007, 3: 1618.
[59]  Zhang C, Zhu Y F. Chem. Mater., 2005, 17: 3537.
[60]  Xia J X, Li H M, Luo Z J, Xu H, Wang K, Yin S, Yan Y S. Mater. Chem. Phys., 2010, 121: 6.
[61]  Zhang L S, Wang H L, Chen Z G, Wong P K, Liu J S. Appl. Catal. B: Environ., 2011, 106: 1.
[62]  Wu J, Duan F, Zheng Y, Xie Y. J. Phys. Chem. C, 2007, 111: 12866.
[63]  Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl. Catal. B: Environ., 2010, 98: 138.
[64]  Bi J H, Wu L, Li J, Li Z H, Wang X X, Fu X Z. Acta Materialia, 2007, 55: 4699.
[65]  Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. J. Mater. Chem., 2011, 21: 887.
[66]  Sun S M, Wang W Z, Zhang L. J. Mater. Chem., 2012, 22: 19244.
[67]  Xi G C, Ye J H. Chem. Commun., 2010, 46: 1893.
[68]  Wang D, Jiang H F, Zong X, Xu Q, Ma Y, Li G L. Chem. Eur. J., 2011, 17: 1275.
[69]  Zhou Y, Tian Z P, Zhao Z Y, Liu Q, Kou J H, Chen X Y, Gao J, Yan S C, Zou Z G. ACS Appl. Mater. Interfaces, 2011, 3: 3594.
[70]  Zheng Y, Duan F, Wu J, Liu L, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2009, 303: 9.
[71]  Zheng Y, Duan F, Chen M Q, Xie Y. J. Mol. Catal. A: Chem., 2010, 317: 34.
[72]  Wang D J, Xue G L, Zhen Y Z, Fu F, Li D S. J. Mater. Chem., 2012, 22: 4751.
[73]  Zhang X F, Zhang Y B, Quan X, Chen S. J. Hazard. Mater., 2009, 167: 911.
[74]  Zhu G Q, Que W X, Zhang J. J. Alloy. Compd., 2011, 509: 9479.
[75]  Li R H, Chen W X, Kobayashi H, Ma C X. Green Chem., 2010, 12: 212.
[76]  Xie J M, Lü X M, Chen M, Zhao G Q, Song Y Z, Lu S S. Dyes Pigments, 2008, 77: 43.
[77]  Wu X H, Qin W, Li L, Guo Y, Xie Z Y. Catal. Commun., 2009, 10(5): 600.
[78]  Xu H, Li H M, Wu C D, Chu J Y, Yan Y S, Shu H M, Gu Z. J. Hazard. Mater., 2008, 153: 877.
[79]  Xu H, Li H, Wu C, Chu J, Yan Y, Shu H. Mater. Sci. Eng. B, 2008, 147: 52.
[80]  Long M, Cai W, Cai J, Zhou B, Chai X, Wu Y. J. Phys. Chem. B, 2006, 110: 20211.
[81]  Jiang H, Nagai M, Kobayashi K. J. Alloys Compd., 2009, 24: 821.
[82]  Zhang L W, Man Y, Zhu Y F. ACS Catal., 2011, 1: 841.
[83]  Xiao Q, Zhang J, Xiao C, Tan X. Catal. Commun., 2008, 9: 1247.
[84]  Tian Y, Zhang L, Zhang J. J. Alloys Compd., 2012, 537: 24.
[85]  Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599.
[86]  Sun S M, Wang W Z, Xu H L, Zhou L, Shang M, Zhang L. J. Phys. Chem. C, 2008, 112: 17835.
[87]  Wang Z Z, Qi Y J, Qi H Y, Lu C J, Wang S M. J. Mater. Sci. Mater. Electron., 2010, 21: 523.
[88]  Hou Y, Xue J Q, Huang Z M, Li T X, Ge Y J, Chu J H. Thin Solid Films, 2008, 517: 901.
[89]  Li Y, Liu J, Huang X, Yu J. Dalton Trans., 2010, 39: 3420.
[90]  Duan F, Zheng Y, Chen M Q. Mater. Lett., 2011, 65: 191.
[91]  Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Environ. Sci. Technol., 2007, 41: 6234.
[92]  Lai K R, Wei W, Zhu Y T, Guo M, Dai Y, Huang B B. J. Solid State Chem., 2012, 187: 103.
[93]  Ng Y H, Iwase A, Kudo A, Amal R. J. Phys. Chem. Lett., 2010, 1: 2607.
[94]  Gao E P, Wang W Z, Shang M, Xu J H. Phys. Chem. Chem. Phys., 2011, 13: 2887.
[95]  Wang P F, Ao Y H, Wang C, Hou J, Qian J. Carbon, 2012, 50: 5256.
[96]  Ai Z H, Ho W K, Lee S C. J. Phys. Chem. C, 2011, 115: 25330.
[97]  Fu H B, Zhang S C, Xu T G, Zhu Y F, Chen J M. Environ. Sci. Technol., 2008, 42: 2085.
[98]  Zhang K, Zhang D Q, Liu J, Ren K X, Luo H, Peng Y J, Li G S, Yu X B. CrystEngComm, 2012, 14: 700.
[99]  Jo W J, Jang J W, Kong K J, Kang H J, Kim J Y, Jun H, Parmar K P S, Lee J S. Angew. Chem. Int. Ed., 2012, 51: 3147.
[100]  Shang M, Wang W Z, Sun S M, Ren J, Zhou L, Zhang L. J. Phys. Chem. C, 2009, 113 (47): 20228.
[101]  Hou J G, Cao R, Jiao S Q, Zhu H M, Kumar R V. Appl. Catal. B: Environ., 2011, 104: 399.
[102]  Duan F, Zhang Q H, Shi D J, Chen M Q. Appl. Surf. Sci., 2013, 268: 129.
[103]  Xiao Q, Zhang J, Xiao C, Tian X. Catal. Commun., 2008, 9: 1247.
[104]  Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. J. Catal., 2009, 262: 144.
[105]  Liu Y Y, Son W J, Lu J B, Huang B B, Dai Y, Whangbo M H. Chem. Eur. J., 2011, 17: 9342.
[106]  Zhang Z J, Wang W Z, Wang L, Sun S M. ACS Appl. Mater. Interfaces, 2012, 4: 593.
[107]  Colón G, López S M, Hidalgo M C, Navío J A. Chem. Commun., 2010, 46: 4809.
[108]  Hou J G, Wang Z, Jiao S Q, Zhu H M. CrystEngComm, 2012, 14: 5923.
[109]  Cheng H F, Huang B B, Qin X Y, Zhang X Y, Dai Y. Chem. Commun., 2012, 48: 97.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133