全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

DNA损伤的光电化学传感器检测

DOI: 10.7536/PC130853, PP. 1-9

Keywords: DNA传感器,光电化学检测,DNA损伤,毒性筛查

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA是生物体主要的遗传物质,DNA损伤在生物体内经常发生。一些内源性和外源性物质可对细胞核内DNA造成氧化和修饰等结构性损伤。未经修复的损伤DNA可导致基因突变甚至癌症的发生。DNA电化学传感器具有快速、灵敏、低成本和易于小型化等优势,非常适用于化学品和环境化合物致DNA损伤毒性的快速筛查。本文首先简要介绍目前流行的DNA电化学传感器的类型和工作原理,然后以我们实验室的工作为基础,重点论述针对DNA损伤检测的电化学和光电化学传感器,包括用于化合物基因毒性快速鉴定的通用型传感器和特定DNA损伤产物(8-羟基脱氧鸟苷,甲基化DNA碱基)定量检测的专用型传感器。最后对DNA损伤电化学传感器目前存在的问题和未来可能的发展方向进行展望。

References

[1]  Rajski S R, Jackson B A, Barton J K. Mutat. Res. Fund. Mol. M., 2000, 447: 49.
[2]  Palecek E, Fojta M. in Bioelectronics. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. 127.
[3]  Helbock H J, Beckman K B, Shigenaga M K, Walter P B, Woodall A A, Yeo H C, Ames B N. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 288.
[4]  Cadet J, D'Ham C, Douki T, Pouget J P, Ravanat J L, Sauvaigo S. Free Radical Res., 1998, 29: 541.
[5]  Wang J, Jiang M, Palecek E. Bioelectrochem. Bioenerg., 1999, 48: 477.
[6]  Pope L H, Allen S, Davies M C, Roberts C J, Tendler S J B, Williams P M. Langmuir, 2001, 17: 8300.
[7]  张先恩(Zhang X E). 生物传感器(Biosensor). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 6.
[8]  Pale?ek E. Progress in Nucleic Acid Research and Molecular Biology (Ed. Cohn W E), 1976, 18: 151.
[9]  Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M. Anal. Chem., 2003, 75: 2181.
[10]  Jelen F, Tomschik M, Pale?ek E. J. Electroanal. Chem., 1997, 423: 141.
[11]  Dennany L, Forster R J, White B, Smyth M, Rusling J F. J. Am. Chem. Soc., 2004, 126: 8835.
[12]  Mbindyo J, Zhou L, Zhang Z, Stuart J D, Rusling J F. Anal. Chem., 2000, 72: 2059.
[13]  Zhou L, Rusling J F. Anal. Chem., 2001, 73: 4780.
[14]  Mugweru A, Rusling J F. Anal. Chem., 2002, 74: 4044.
[15]  Yang J, Zhang Z, Rusling J F. Electroanalysis, 2002, 14: 1494.
[16]  Dennany L, Forster R J, Rusling J F. J. Am. Chem. Soc., 2003, 125: 5213.
[17]  Munge B, Estavillo C, Schenkman J B, Rusling J F. Chem. Bio. Chem., 2003, 4: 82.
[18]  Rusling J F. Biosens. Bioelectron., 2004, 20: 1022.
[19]  Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2007, 79: 1897.
[20]  So M, Hvastkovs E G, Schenkman J B, Rusling J F. Biosens. Bioelectron., 2007, 23: 492.
[21]  Hvastkovs E G, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman J B, Rusling J F. Anal. Chem., 2008, 80: 2272.
[22]  Liu Y, Hu N. Biosens. Bioelectron., 2009, 25: 185.
[23]  Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2003, 21: 1192.
[24]  Boon E M, Barton J K. Curr. Opin. Struc. Biol., 2002, 12: 320.
[25]  Mugweru A, Wang B, Rusling J F. Anal. Chem., 2004, 76: 5557.
[26]  Poje M, Sokoli D? -Maravi D? L. Tetrahedron, 1986, 42: 747.
[27]  Hosford M E, Muller J G, Burrows C J. J. Am. Chem. Soc., 2004, 126: 9540.
[28]  Zhang B, Guo L H, Greenberg M M. Anal. Chem., 2012, 84: 6048.
[29]  Bergeron F, Auvré F, Radicella J P, Ravanat J L. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 5528.
[30]  Beranek D T, Weis C C, Swenson D H. Carcinogenesis, 1980, 1: 595.
[31]  Singer B. Molecular Biology of Mutagens and Carcinogens. NY: Plenum Press, 1983.
[32]  Chaudhuri I, Essigmann J M. Carcinogenesis, 1991, 12: 2283.
[33]  Toyokuni S. Free Radical Bio. Med., 1996, 20: 553.
[34]  Valko M, Morris H, Cronin M T D. Curr. Med. Chem., 2005, 12: 1161.
[35]  Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Chem. Biol. Interact., 2006, 160: 1.
[36]  Meerman J H N, Beland F A, Mulder G J. Carcinogenesis, 1981, 2: 413.
[37]  Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270: 942.
[38]  Jia S, Zhu B Z, Guo L H. Anal. Bioanal. Chem., 2010, 397: 2395.
[39]  Pang S W, Park H Y, Jang Y S, Kim W S, Kim J H. Colloids. Surf. B, 2002, 26: 213.
[40]  Fritz H, Maier M, Bayer E. J. Colloid Interf. Sci., 1997, 195: 272.
[41]  Zhang B T, Du X, Jia S P, He J H, Guo L H. Sci. China Chem., 2011, 54: 1260.
[42]  Friedberg E C. Nature, 2003, 421: 436.
[43]  Sch?rer O D. Angew. Chem. Int. Ed., 2003, 42: 2946.
[44]  England T G, Jenner A, Aruoma O I, Halliwell B. Free Radical Res., 1998, 29: 321.
[45]  Jenner A, England T G, Aruoma O I, Halliwell B. Biochem. J., 1998, 331: 365.
[46]  Ciolkowski M L, Fang M M, Lund M E. J. Pharmaceut. Biomed., 2000, 22: 1037.
[47]  Pale?ek E, Fojta M. Anal. Chem., 2001, 73: 74A.
[48]  Johnston D H, Thorp H H. J. Phys. Chem., 1996, 100: 13837.
[49]  Johnston D H, Glasgow K C, Thorp H H. J. Am. Chem. Soc., 1995, 117: 8933.
[50]  Pale?ek E, Hung M A. Anal. Biochem., 1983, 132: 236.
[51]  Pale?ek E, Vojtí?ková M, Jelen F, Luká?ová E. Bioelectrochem. Bioenerg., 1984, 12: 135.
[52]  Luká?ova E, Jelen F, Pale?ek E. Gen. Physiol. Biophys., 1982, 1: 53.
[53]  Jelen F, Kalovsky P, Makaturová E, Pe?inka P, Pale?ek E. Gen. Physiol. Biophys., 1991, 10: 461.
[54]  Zhu N, Cai H, He P, Fang Y. Anal. Chim. Acta, 2003, 481: 181.
[55]  Fojta M, Pale?ek E. Anal. Chim. Acta, 1997, 342: 1.
[56]  Jelen F, Fojta M, Pale?ek E. J. Electroanal. Chem., 1997, 427: 49.
[57]  Rusling J F, Forster R J. J. Colloid Interf. Sci., 2003, 262: 1.
[58]  Wang B Q, Rusling J F. Anal. Chem., 2003, 75: 4229.
[59]  Zhou L P, Yang J, Estavillo C, Stuart J D, Schenkman J B, Rusling J F. J. Am. Chem. Soc., 2003, 125: 1431.
[60]  Zu Y, Liu H, Zhang Y, Hu N. Electrochim. Acta, 2009, 54: 2706.
[61]  Cahova-Kucharikova K, Fojta M, Mozga T, Palecek E. Anal. Chem., 2005, 77: 2920.
[62]  Boon E M, Ceres D M, Drummond T G, Hill M G, Barton J K. Nat. Biotechnol., 2000, 18: 1096.
[63]  Kelley S O, Jackson N M, Hill M G, Barton J K. Angew. Chem. Int. Ed., 1999, 38: 941.
[64]  Kalyanasundaram K, Gr?tzel M. Coordin. Chem. Rev., 1998, 177: 347.
[65]  Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2003, 76: 499.
[66]  Chen D, Zhang H, Li X, Li J H. Anal. Chem., 2010, 82: 2253.
[67]  Lu W, Wang G, Jin Y, Yao X, Hu J Q, Li J H. Appl. Phys. Lett., 2006, 89: 263902.
[68]  Lu W, Jin Y, Wang G, Chen D, Li J H. Biosens. Bioelectron., 2008, 23: 1534.
[69]  Liang M, Liu S, Wei M, Guo L H. Anal. Chem., 2005, 78: 621.
[70]  Holmlin R E, Stemp E D A, Barton J K. Inorg. Chem., 1998, 37: 29.
[71]  Liang M, Guo L H. Environ. Sci. Technol., 2007, 41: 658.
[72]  Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[73]  Beckman K B, Ames B N. J. Biol. Chem., 1997, 272: 19633.
[74]  Wu L L, Chiou C C, Chang P Y, Wu J T. Clin. Chim. Acta, 2004, 339: 1.
[75]  Kawanishi S, Hiraku Y, Murata M, Oikawa S. Free Radical Bio. Med., 2002, 32: 822.
[76]  Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, Wright C J, Doak S H. Biomaterials, 2009, 30: 3891.
[77]  Wrona M Z, Owens J L, Dryhurst G. J. Electroanal. Chem. Interfacial Electrochem., 1979, 105: 295.
[78]  Xue L, Greenberg M M. J. Am. Chem. Soc., 2007, 129: 7010.
[79]  Box H C, Budzinski E E, Dawidzik J B, Gobey J S, Freund H G. Free Radical Bio. Med., 1997, 23: 1021.
[80]  Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y. Annu. Rev. Biochem., 1988, 57: 133.
[81]  Ezaz-Nikpay K, Verdine G L. Chem. Biol., 1994, 1: 235.
[82]  Wu Y P, Zhang B T, Guo L H. Anal. Chem., 2013, 85: 6908.
[83]  Imlay J, Chin S, Linn S. Science, 1988, 240: 640.
[84]  Kasai H. Mutat. Res. Rev. Mutat., 1997, 387: 147.
[85]  Luo Y, Han Z, Chin S M, Linn S. Proc. Natl. Acad. Sci. U. S. A., 1994, 91: 12438.
[86]  Jia S, Liang M, Guo L H. J. Phys. Chem B, 2008, 112: 4461.
[87]  Lin P H, La D K, Upton P B, Swenberg J A. Carcinogenesis, 2002, 23: 365.
[88]  Zhu B Z, Zhao H T, Kalyanaraman B, Frei B. Free Radical Bio. Med., 2002, 32: 465.
[89]  Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Letters, 2006, 6: 1794.
[90]  Xia T, Kovochich M, Liong M, Zink J I, Nel A E. ACS Nano, 2007, 2: 85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133