全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

有机共晶光电功能材料与器件

DOI: 10.7536/PC140339, PP. 1292-1306

Keywords: 有机半导体,共晶,光电器件

Full-Text   Cite this paper   Add to My Lib

Abstract:

在双组分或多组分有机共晶中,特殊的分子堆积方式和聚集态结构以及不同组分之间的协同和集合效应,使得有机共晶不仅保留了单一组分的固有属性,而且展现出更多新颖的宏观光电性质,在电导、铁电、双极性电荷传输、光响应、发光和给受体组分间电荷转移过程等方面具有重要的研究价值和应用前景,为有机单晶器件的高性能化和多功能化发展提供了新途径。因此,有机共晶的制备和性能研究逐渐成为近年来的热点。在本文中我们首先详细地介绍了有机共晶的分类情况,根据形成晶体的作用力分为电荷转移晶体、通过π-π相互作用形成的晶体和以分子间氢键、卤键相互作用为主的晶体;其次,以经典的7,7,8,8-四氰基对苯二醌二甲烷(TCNQ)、1,2,4,5-苯四甲腈(TCNB)和富勒烯(C60)三种典型的受体分子为例,列举了常见的有机给受体材料;再次,介绍了8种制备有机共晶的常用方法,讨论了有机共晶中分子排布方式对性能的影响;最后,介绍了有机共晶在光电器件中的应用。我们相信有机共晶的理论和应用研究会进一步丰富和推动有机晶体材料和光电子学领域的发展。

References

[1]  Hains A W, Liang Z Q, Woodhouse M A, Gregg B A. Chem. Rev., 2010, 110: 6689.
[2]  Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913.
[3]  Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y, Nishikawa T, Kawase T, Shimoda T, Ogawa S. Appl. Phys. Lett., 2007, 90: 102120.
[4]  Stingelin-Stutzmann N, Smits E, Wondergem H, Tanase C, Blom P, Smith P, de Leeuw D. Nat. Mater., 2005, 4: 601.
[5]  Li R J, Hu W P, Liu Y Q, Zhu D B. Acc. Chem. Res., 2010, 43: 529.
[6]  Briseno A L, Mannsfeld S C B, Reese C, Hancock J M, Xiong Y J, Jenekhe S A, Bao Z N, Xia Y N. Nano Lett., 2007, 7: 2847.
[7]  Jiang H, Zhao H P, Zhang K K, Chen X D, Kloc C, Hu W P. Adv. Mater., 2011, 23: 5075.
[8]  Dadvand A, Moiseev A G, Sawabe K, Sun W H, Djukic B, Chung I, Takenobu T, Rosei F, Perepichka D F. Angew. Chem. Int. Ed., 2012, 51: 3837.
[9]  Bisri S Z, Takenobu T, Yomogida Y, Shimotani H, Yamao T, Hotta S, Iwasa Y. Adv. Funct. Mater., 2009, 19: 1728.
[10]  Dunitz J D. CrystEngComm, 2003, 5: 506.
[11]  Zhang J, Geng H, Virk T S, Zhao Y, Tan J H, Di C A, Xu W, Singh K, Hu W P, Shuai Z G, Liu Y Q, Zhu D B. Adv. Mater., 2012, 24: 2603.
[12]  Zhang J, Tan J H, Ma Z Y, Xu W, Zhao G Y, Geng H, Di C A, Hu W P, Shuai Z G, Singh K, Zhu D B. J. Am. Chem. Soc., 2012, 135: 558.
[13]  Kumaresan S, Seethalakshmi P G, Kumaradhas P, Devipriya B. J. Mol. Struct., 2013, 1032: 169.
[14]  Gagnière E, Mangin D, Puel F, Rivoire A, Monnier O, Garcia E, Klein J P. J. Cryst. Growth, 2009, 311: 2689.
[15]  Lee S C, Ueda A, Kamo H, Takahashi K, Uruichi M, Yamamoto K, Yakushi K, Nakao A, Kumai R, Kobayashi K, Nakao H, Murakami Y, Mori H. Chem. Commun., 2012, 48: 8673.
[16]  Boyineni A, Jayanty S, Pallepogu R. J. Cryst. Growth, 2013, 380: 241.
[17]  Menard E, Podzorov V, Hur S H, Gaur A, Gershenson M E, Rogers J A. Adv. Mater., 2004, 16: 2097.
[18]  Jiang H, Yang X J, Cui Z D, Liu Y C, Li H X, Hu W P. Appl. Phys. Lett., 2009, 94: 123308.
[19]  Sakai M, Sakuma H, Ito Y, Saito A, Nakamura M, Kudo K. Phys. Rev. B, 2007, 76: 045111.
[20]  Olmstead M M, Bettencourt-Dias A D, Lee H M, Pham D, Balch A L. Dalton Trans., 2003, 3227.
[21]  Brook D J R, Koch T H. J. Mater. Chem., 1997, 7: 2381.
[22]  Li J, Xiong Y, Wu Q H, Wang S T, Gao X K, Li H X. Eur. J. Org. Chem., 2012, 2012: 6136.
[23]  Miller J S. Angew. Chem. Int. Ed., 2006, 45: 2508.
[24]  Iwata S, Tanaka J, Nagakura S. J. Am. Chem. Soc., 1966, 88: 894.
[25]  Izuoka A, Tachikawa T, Sugawara T, Suzuki Y, Konno M, Saito Y, Shinohara H. J. Chem. Soc. Chem. Commun., 1992, 1472.
[26]  Wakahara T, D’Angelo P, Miyazawa K, Nemoto Y, Ito O, Tanigaki N, Bradley D D C, Anthopoulos T D. J. Am. Chem. Soc., 2012, 134: 7204.
[27]  Konarev D V, Lyubovskaya R N, Drichko N Y V, Yudanova E I, Shulga Y M, Litvinov A L, Semkin V N, Tarasov B P. J. Mater. Chem., 2000, 10: 803.
[28]  Fri??i D?T, Jones W. Cryst. Growth Des., 2009, 9: 1621.
[29]  Bechgaard K, Kistenmacher T J, Bloch A N, Cowan D O. Acta Crystallogr. B, 1977, 33: 417.
[30]  Kobayashi H, Nakayama J. Bull. Chem. Soc. Jpn., 1981, 54: 2408.
[31]  Zhu L Y, Yi Y P, Li Y, Kim E G, Coropceanu V, Brédas J L. J. Am. Chem. Soc., 2012, 134: 2340.
[32]  Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2013, 1: 2286.
[33]  Wei L, Yao J N, Fu H B. ACS Nano, 2013, 7: 7573.
[34]  Yu W, Wang X Y, Li J, Li Z T, Yan Y K, Wang W, Pei J. Chem. Commun., 2013, 49: 54.
[35]  Lei Y L, Liao L S, Lee S T. J. Am. Chem. Soc., 2013, 135: 3744.
[36]  Horiuchi S, Hasegawa T, Tokura Y. J. Phys. Soc. Jpn., 2006, 75: 051016.
[37]  Wang C L, Dong H L, Hu W P, Liu Y Q, Zhu D B. Chem. Rev., 2011, 112: 2208.
[38]  Bisri S Z, Sawabe K, Imakawa M, Maruyama K, Yamao T, Hotta S, Iwasa Y, Takenobu T. Sci. Rep., 2012, 2: 1.
[39]  Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q, Yao J N. Acc. Chem. Res., 2009, 43: 409.
[40]  Zheng J Y, Yan Y L, Wang X P, Zhao Y S, Huang J X, Yao J N. J. Am. Chem. Soc., 2012, 134: 2880.
[41]  Xu Z Z, Liao Q, Shi Q, Zhang H L, Yao J N, Fu H B. Adv. Mater., 2012, 24: OP216.
[42]  Jurchescu O D, Popinciuc M, van Wees B J, Palstra T T M. Adv. Mater., 2007, 19: 688.
[43]  Kabe R, Nakanotani H, Sakanoue T, Yahiro M, Adachi C. Adv. Mater., 2009, 21: 4034.
[44]  Nakanotani H, Saito M, Nakamura H, Adachi C. Appl. Phys. Lett., 2009, 95: 033308.
[45]  Aakeroy C B, Salmon D J. CrystEngComm, 2005, 7: 439.
[46]  Desiraju G R. CrystEngComm, 2003, 5: 466.
[47]  Ferraris J, Cowan D O, Walatka V, Perlstein J H. J. Am. Chem. Soc., 1973, 95: 948.
[48]  Canevet D, Pérez E M, Martín N. Angew. Chem. Int. Ed., 2011, 50: 9248.
[49]  Yan D, Delori A, Lloyd G O, Fri??i D?T, Day G M, Jones W, Lu J, Wei M, Evans D G, Duan X. Angew. Chem. Int. Ed., 2011, 50: 12483.
[50]  Stojakovi D?J, Whitis A M, MacGillivray L R. Angew. Chem. Int. Ed., 2013, 52: 12127.
[51]  Bosshard C, Pan F, Wong M S, Manetta S, Spreiter R, Cai C, Günter P, Gramlich V. Chem. Phys., 1999, 245: 377.
[52]  Harris K D M, Stainton N M, Callan A M, Howie R A. J. Mater. Chem., 1993, 3: 947.
[53]  Reinheimer E, Zhao H H, Dunbar K. J. Chem. Crystallogr., 2010, 40: 514.
[54]  Dillon R J, Bardeen C J. J. Phys. Chem. A, 2011, 115: 1627.
[55]  Douthwaite R E, Green M L H, Heyes S J, Rosseinsky M J, Turner J F C. J. Chem. Soc. Chem. Commun., 1994, 1367.
[56]  Ito Y, Virkar A A, Mannsfeld S, Oh J H, Toney M, Locklin J, Bao Z N. J. Am. Chem. Soc., 2009, 131: 9396.
[57]  Wakahara T, Sathish M, Miyazawa K, Hu C P, Tateyama Y, Nemoto Y, Sasaki T, Ito O. J. Am. Chem. Soc., 2009, 131: 9940.
[58]  Lei Y L, Jin Y, Zhou D Y, Gu W, Shi X B, Liao L S, Lee S T. Adv. Mater., 2012, 24: 5345.
[59]  Liu C, Minari T, Lu X, Kumatani A, Takimiya K, Tsukagoshi K. Adv. Mater., 2011, 23: 523.
[60]  Park S K, Varghese S, Kim J H, Yoon S J, Kwon O K, An B K, Gierschner J, Park S Y. J. Am. Chem. Soc., 2013, 135: 4757.
[61]  Tremblay N J, Gorodetsky A A, Cox M P, Schiros T, Kim B, Steiner R, Bullard Z, Sattler A, So W Y, Itoh Y, Toney M F, Ogasawara H, Ramirez A P, Kymissis I, Steigerwald M L, Nuckolls C. Chem Phys Chem, 2010, 11: 799.
[62]  Black H T, Perepichka D F. Angew. Chem. Int. Ed., 2014, 53: 2138.
[63]  Braga D, Maini L, Grepioni F. Chem. Soc. Rev., 2013, 42: 7638.
[64]  Pope M. Electronic Processes in Organic Crystals and Polymers. 2nd ed. Oxford: Oxford University Press, 1999.
[65]  Rao K V, Jayaramulu K, Maji T K, George S J. Angew. Chem. Int. Ed., 2010, 49: 4218.
[66]  Sagade A A, Rao K V, Mogera U, George S J, Datta A, Kulkarni G U. Adv. Mater., 2013, 25: 559.
[67]  Sato S, Nikawa H, Seki S, Wang L, Luo G F, Lu J, Haranaka M, Tsuchiya T, Nagase S, Akasaka T. Angew. Chem. Int. Ed., 2012, 51: 1589.
[68]  Wu H D, Wang F X, Xiao Y, Pan G B. J. Mater. Chem. C, 2014, 2: 2328.
[69]  Horiuchi S, Ishii F, Kumai R, Okimoto Y, Tachibana H, Nagaosa N, Tokura Y. Nat. Mater., 2005, 4: 163.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133