全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

锂离子电池SnS2基负极材料

DOI: 10.7536/PC140456, PP. 1586-1595

Keywords: SnS2,水热(溶剂热)法,复合,石墨烯,负极材料,锂离子电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着应用范围的逐渐扩大,锂离子电池对具有高比容量、长循环寿命以及优异倍率性能的新型正负极材料的需求日益迫切。SnS2材料因具有独特的层状结构和高的理论比容量而被视作潜在的高比容量负极材料,但其也存在首次不可逆容量较大、导电率低、充放电过程中体积变化较大等问题。本文综述了SnS2负极材料的研究历程以及最新研究进展,介绍了SnS2负极材料的基本性质,具体论述了SnS2电化学性能改进的相关措施,主要包括控制纳米SnS2微观形貌、制备SnS2/C及SnS2/氧化物复合材料、掺杂、一体化电极以及优化粘结剂等。文章同时总结了水热(溶剂热)法各工艺参数(原料种类、浓度、比例、溶液pH值、水热温度及时间等)对制备SnS2纳米材料及SnS2/C复合材料形貌结构及电化学性能的影响,并对目前SnS2材料仍然存在的问题进行了分析。研究表明,通过制备片状、花状等高比表面积的SnS2纳米材料,可明显提升其循环性能;将石墨烯等碳材料与SnS2复合,有助于提高材料的结构稳定性及导电性,进而改善电极的循环及倍率性能。经工艺优化后的SnS2/graphene复合材料具有高的比容量(大于1000mAh/g)、稳定的循环性能和优秀的倍率特性,是一种非常有研究价值的高比容量锂离子电池负极材料。

References

[1]  Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.
[2]  Scrosati B, Hassoun J, Sun Y K. Energy Environ. Sci., 2011, 4: 3287.
[3]  Zhang W J. J. Power Sources, 2011, 196: 13.
[4]  Wu H, Cui Y. Nano Today, 2012, 7: 414.
[5]  Liang C, Gao M, Pan H, Liu Y, Yan M. J. Alloys Compd., 2013, 575: 246.
[6]  Yuan S, Zhou Z, Li G. CrystEngComm, 2011, 13: 4709.
[7]  Su L, Zhong Y, Zhou Z. J. Mater. Chem. A, 2013, 1: 15158.
[8]  Liu L, Li Y, Yuan S, Ge M, Ren M, Sun C, Zhou Z. J. Phys. Chem. C, 2010, 114: 251.
[9]  Liu L, Yuan Z, Qiu C, Liu J. Solid State Ionics, 2013, 241: 25.
[10]  Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ. Sci., 2014, 7: 209.
[11]  黄震雷(Huang Z L), 应皆荣(Ying J R), 孙莞柠(Sun W N), 姜长印(Jiang C Y), 万春荣(Wan C R). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2010, 39(1): 182.
[12]  Liu L, Liu H, Kou H, Wang Y, Zhou Z, Ren M, Ge M, He X. Cryst. Growth Des., 2009, 9: 113.
[13]  Yang Z, Ren Y, Zhang Y, Li J, Li H, Huang X, Hu X, Xu Q. Biosens. Bioelectron., 2011, 26: 4337.
[14]  Li J, Yang Z, Tang Y, Zhang Y, Hu X. Biosens. Bioelectron., 2013, 41: 698.
[15]  Bian X, Lu X, Xue Y, Zhang C, Kong L, Wang C. J. Colloid Interface Sci., 2013, 406: 37.
[16]  Seo J W, Jang J T, Park S W, Kim C, Park B, Cheon J. Adv. Mater., 2008, 20: 4269.
[17]  Zhai C, Du N, Zhang H, Yang D. Chem. Commun., 2011, 47: 1270.
[18]  Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W. CrystEngComm, 2012, 14: 832.
[19]  马琳(Ma L), 李辉(Li H), 常焜(Chang K), 李赫(Li H), 陈卫祥(Chen W X). 浙江大学学报(工学版)(Journal of Zhejiang University (Engineering Science)), 2011, 45: 354.
[20]  Wu Q, Jiao L, Du J, Yang J, Guo L, Liu Y, Wang Y, Yuan H. J. Power Sources, 2013, 239: 89.
[21]  Zou Y, Wang Y. Chem. Eng. J., 2013, 229: 183.
[22]  Gou X L, Chen J, Shen P W. Mater. Chem. Phys., 2005, 93: 557.
[23]  Wang J, Liu J, Xu H, Ji S, Wang J, Zhou Y, Hodgsonc P, Li Y. J. Mater. Chem. A, 2013, 1: 1117.
[24]  Kim H S, Chung Y H, Kang S H, Sung Y E. Electrochim. Acta, 2009, 54: 3606.
[25]  Zhai C, Du N, Zhang H, Yu J, Yang D. ACS Appl. Mater. Inter., 2011, 3: 4067.
[26]  Du Y, Yin Z, Rui X, Zeng Z, Wu X J, Liu J, Zhu Y, Zhu J, Huang X, Yan Q, Zhang H. Nanoscale, 2013, 5: 1456.
[27]  He M, Yuan L X, Huang Y H. RSC Adv., 2013, 3: 3374.
[28]  Sathish M, Mitani S, Tomai T, Unemoto A, Honma I. J. Solid State Electrochem., 2012, 16: 1767.
[29]  Jiang Z, Wang C, Du G, Zhong Y J, Jiang J Z. J. Mater. Chem., 2012, 22: 9494.
[30]  Liu S, Lu X, Xie J, Cao G, Zhu T, Zhao X. ACS Appl. Mater. Inter., 2013, 5: 1588.
[31]  Jiang J, Feng Y, Mahmood N, Liu F, Hou Y. Sci. Adv. Mater., 2013, 5: 1667.
[32]  Mei L, Xu C, Yang T, Ma J, Chen L, Li Q, Wang T. J. Mater. Chem. A, 2013, 1: 8658.
[33]  Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. J. Power Sources, 2013, 237: 178.
[34]  Du N, Wu X, Zhai C, Zhang H, Yang D. J. Alloys Compd., 2013, 580: 457.
[35]  Chen P, Su Y, Liu H, Wang Y. ACS Appl. Mater. Inter., 2013, 5: 12073.
[36]  Wu P, Du N, Zhang H, Liu J, Chang L, Wang L, Yang D, Jiang J Z. Nanoscale, 2012, 4: 4002.
[37]  Chang K, Chen W X, Li H, Li H. Electrochim. Acta, 2011, 56: 2856.
[38]  Shi W, Lu B. Electrochim. Acta, 2014, 133: 247.
[39]  Wang Q, Huang Y, Miao J, Zhao Y, Wang Y. Electrochim. Acta, 2013, 93: 120.
[40]  Wang Q, Huang Y, Miao J, Zhao Y, Zhang W, Wang Y. J. Am. Ceram. Soc., 2013, 96: 2190.
[41]  Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4: 3243.
[42]  McDowell M T, Lee S W, Nix W D, Cui Y. Adv. Mater., 2013, 25: 4966.
[43]  Yuan S, Li J, Yang L, Su L, Liu L, Zhou Z. ACS Appl. Mater. Interfaces, 2011, 3: 705.
[44]  Mi L, Chen Y, Wei W, Chen W, Houb H, Zheng Z. RSC Adv., 2013, 3: 17431.
[45]  Chakrabarti A, Lu J, McNamara A M, Kuta L M, Stanley S M, Xiao Z, Maguire J A, Hosmane N S. Inorg. Chim. Acta, 2011, 374: 627.
[46]  Im H S, Myung Y, Cho Y J, Kim C H, Kim H S, Back S H, Jung C S, Jang D M, Lim Y R, Park J, Ahnb J P. RSC Adv., 2013, 3: 10349.
[47]  Geng H, Su Y, Wei H, Xu M, Wei L, Yang Z, Zhang Y. Mater. Lett., 2013, 111: 204.
[48]  Cai P, Ma D K, Liu Q C, Zhou S M, Chen W, Huang S M. J. Mater. Chem. A, 2013, 1: 5217.
[49]  Zhang Y C, Du Z N, Li S Y, Zhang M. Appl. Catal. B: Environ., 2010, 95: 153.
[50]  Morales J, Perez-Vicente C, Tirado J L. Solid State Ionics, 1992, 51: 133.
[51]  Clerc D G, Cleary D A. Chem. Mater., 1994, 6: 13.
[52]  Julien C, Perez-Vicente C. Solid State Ionics, 1996, 89: 337.
[53]  Brousse T, Lee S M, Pasquereau L, Defives D, Schleich D M. Solid State Ionics, 1998, 113: 51.
[54]  Wang L, Zhuoa L, Yu Y, Zhao F. Electrochim. Acta, 2013, 112: 439.
[55]  Lefebvre-Devos I, Olivier-Fourcade J, Jumas J C, Lavela P. Phys. Rev. B, 2000, 64: 3110.
[56]  Momma T, Shiraishi N, Yoshizawa A, Osaka T, Gedanken A, Zhu J, Sominski L. J. Powder Sources, 2001, 97: 198.
[57]  Mukaibo H, Yoshizawa A, Momma T, Osaka T. J. Power Sources, 2003, 119: 60.
[58]  Kim T J, Kim C, Son D, Choi M, Park B. J. Power Sources, 2007, 167: 529.
[59]  Liu S, Yin X, Chen L, Li Q, Wang T. Solid State Sci., 2010, 12: 712.
[60]  Zai J, Wang K, Su Y, Qian X, Chen J. J. Power Sources, 2011, 196: 3650.
[61]  Ma J, Lei D, Duan X, Li Q, Wang T, Cao A, Maod Y, Zheng W. RSC Adv., 2012, 2: 3615.
[62]  Zai J, Qian X, Wang K, Yu C, Tao L, Xiao Y, Chen J. CrystEngComm., 2012, 14: 1364.
[63]  Lei D, Zhang M, Qu B, Ma J, Li Q, Chen L, Lu B, Wang T. Electrochim. Acta, 2013, 106: 386.
[64]  周欢(Zhou H), 柴波(Chai B), 廖翰韬(Liao H T), 张献旺(Zhang X W). 人工晶体学报(Journal of Synthetic Cyrstal), 2013, 42: 2627.
[65]  Xia J, Li G, Mao Y, Li Y, Shen P, Chen L. CrystEngComm, 2012, 14: 4279.
[66]  Wang Q, Wang D, Wu M, Liu B, Chen J, Wang T, Chen J. J. Phys. Chem. Solids, 2011, 72: 630.
[67]  Zhang Y Z, Pang H, Sun Y, Lai W Y, Wei A, Huang W. Int. J. Electrochem. Sci., 2013, 8: 3371.
[68]  Su L, Jing Y, Zhou Z. Nanoscale, 2011, 3: 3967.
[69]  Li J, Wu P, Lou F, Zhang P, Tang Y, Zhou Y, Lu T. Electrochim. Acta, 2013, 111: 862.
[70]  Sun H, Ahmad M, Luo J, Shi Y, Shen W, Zhu J. Mater. Res. Bull., 2014, 49: 319.
[71]  Jing Y, Zhou Z, Cabrera C R, Chen Z. J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01033G.
[72]  Chang K, Wang Z, Huang G, Li H, Chen W, Lee J Y. J. Power Sources, 2012, 201: 259.
[73]  Ji L, Xin H L, Kuykendall T R, Wu S L, Zheng H, Rao M, Cairns E J, Battaglic V, Zhang Y. Phys. Chem. Chem. Phys., 2012, 14: 6981.
[74]  Zhang M, Lei D, Yu X, Chen L, Li Q, Wang Y, Wang T, Cao G. J. Mater. Chem., 2012, 22: 23091.
[75]  Yin J, Cao H, Zhou Z, Zhang J, Qu M. J. Mater. Chem., 2012, 22: 23963.
[76]  Zhuo L, Wu Y, Wang L, Yu Y, Zhang X, Zhao F. RSC Adv., 2012, 2: 5084.
[77]  Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Energy Environ. Sci., 2012, 5: 5226.
[78]  Sathish M, Mitani S, Tomai T, Honma I. J. Phys. Chem. C, 2012, 116: 12475.
[79]  Shen C, Ma L, Zheng M, Zhao B, Qiu D, Pan L, Cao J, Shi Y. J. Solid State Electrochem., 2012, 16: 1999.
[80]  Zhang Q, Li R, Zhang M, Zhang B, Gou X. Electrochim. Acta, 2014, 115: 425.
[81]  Liu S, Yin X, Hao Q, Zhang M, Li L, Chen L, Li Q, Wang Y, Wang T. Mater. Lett., 2010, 64: 2350.
[82]  Zhong H, Yang G, Song H, Liao Q, Cui H, Shen P, Wang C X. J. Phys. Chem. C, 2012, 116: 9319.
[83]  Kang J G, Lee G H, Park K S, Kim S O, Lee S, Kim D W, Park J G. J. Mater. Chem., 2012, 22: 9330.
[84]  Zhong H, Zhou P, Yue L, Tang D, Zhang L. J. Appl. Electrochem., 2014, 44: 45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133