全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

大肠杆菌氧化还原辅因子代谢工程

DOI: 10.7536/PC140322, PP. 1609-1618

Keywords: 氧化还原辅因子,大肠杆菌,代谢工程,生物转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

NAD+、NADP+、NADH、NADPH等四类烟酰胺类辅因子也被称为氧化还原辅因子,是维持细胞氧化还原平衡,驱动胞内许多分解与合成反应的重要分子。近年来,辅因子在生物转化系统中的作用受到研究者的重视,氧化还原辅因子更成为人们关注的重点。文章综述了大肠杆菌(Escherichiacoli,E.coli)氧化还原辅因子代谢工程研究的最新进展,重点总结最近发展的氧化还原辅因子代谢工程策略,讨论不同代谢工程策略对细胞氧化还原辅因子水平的影响及其在生物合成中的应用,并展望了辅因子代谢工程未来发展方向。

References

[1]  Lee W H, Kim M D, Jin Y S, Seo J H. Appl. Microbiol. Biotechnol., 2013, 97(7): 2761.
[2]  Duetz W A, van Beilen J B, Witholt B. Curr. Opin. Biotechnol., 2001, 12(4): 419.
[3]  Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger K E. Biotechnol. J., 2006, 1(7/8): 777.
[4]  Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y. Metab. Eng., 2013, 17: 42.
[5]  Li Z J, Cai L, Wu Q, Chen G Q. Appl. Microbiol. Biotechnol., 2009, 83(5): 939.
[6]  Liu R, Liang L, Wu M, Chen K, Jiang M, Ma J, Wei P, Ouyang P. Biochem. Eng. J., 2013, 79: 77.
[7]  Lim S J, Jung Y M, Shin H D, Lee Y H. J. Biosci. Bioeng., 2002, 93(6): 543.
[8]  Lee W H, Park J B, Park K, Kim M D, Seo J H. Appl. Microbiol. Biotechnol., 2007, 76(2): 329.
[9]  Chemler J A, Fowler Z L, McHugh K P, Koffas M A. Metab. Eng., 2010, 12(2): 96.
[10]  Lee H C, Kim J S, Jang W, Kim S Y. J. Biotechnol., 2010, 149(1/2): 24.
[11]  Siedler S, Bringer S, Bott M. Appl. Microbiol. Biotechnol., 2011, 92(5): 929.
[12]  Siedler S, Bringer S, Blank L M, Bott M. Appl. Microbiol. Biotechnol., 2012, 93(4): 1459.
[13]  Alper H, Jin Y S, Moxley J F, Stephanopoulos G. Metab. Eng., 2005, 7(3): 155.
[14]  Wang Y, San K Y, Bennett G N. Appl. Microbiol. Biotechnol., 2013, 97(15): 6883.
[15]  Van der Donk W A, Zhao H. Curr. Opin. Biotechnol., 2003, 14(4): 421.
[16]  Sanchez A M, Andrews J, Hussein I, Bennett G N, San K Y. Biotechnol. Prog., 2006, 22(2): 420.
[17]  Rathnasingh C, Raj S M, Lee Y, Catherine C, Ashok S, Park S. J. Biotechnol., 2012, 157(4): 633.
[18]  Atsumi S, Wu T Y, Eckl E M, Hawkins S D, Buelter T, Liao J C. Appl. Microbiol. Biotechnol., 2010, 85(3): 651.
[19]  Bastian S, Liu X, Meyerowitz J T, Snow C D, Chen M M, Arnold F H. Metab. Eng., 2011, 13(3): 345.
[20]  Shi A, Zhu X, Lu J, Zhang X, Ma Y. Metab. Eng., 2013, 16(1): 1.
[21]  Lee H C, Kim J S, Jang W, Kim S Y. Biotechnol. Lett., 2009, 31(12): 1929.
[22]  Park H J, Jung J, Choi H, Uhm K N, Kim H K. J. Microbiol. Biotechnol., 2010, 20(9): 1300.
[23]  Zhang J D, Li A T, Yu H L, Imanaka T, Xu J H. J. Ind. Microbiol. Biotechnol., 2011, 38(5): 633.
[24]  Schewe H, Kaup B A, Schrader J. Appl. Microbiol. Biotechnol., 2008, 78(1): 55.
[25]  Zhou P, Li S, Xu H, Feng X, Ouyang P. Enzyme Microb. Technol., 2012, 51(2): 119.
[26]  Ma S M, Garcia D E, Redding-Johanson A M, Friedland G D, Chan R, Batth T S, Haliburton J R, Chivian D, Keasling J D, Petzold C J, Soon Lee T, Chhabra S R. Metab. Eng., 2011, 13(5): 588.
[27]  Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Nat. Biotechnol., 2003, 21(7): 796.
[28]  Berrios-Rivera S J, San K Y, Bennett G N. Metab. Eng., 2002, 4(3): 238.
[29]  Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P. Enzyme Microb. Technol., 2012, 51(5): 286.
[30]  Zhou Y J, Yang W, Wang L, Zhu Z, Zhang S, Zhao Z K. Microb. Cell Fact., 2013, 12(1): 103.
[31]  Bruschi F, Dundar M, Gahan P B, Gartland K, Szente M, Viola-Magni M P, Akbarova Y. Curr. Opin. Biotechnol., 2011, 22 Suppl 1: S7.
[32]  Lee W H, Kim J W, Park E H, Han N S, Kim M D, Seo J H. Appl. Microbiol. Biotechnol., 2013, 97(4): 1561.
[33]  Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior B A, Wang Z. Biotechnol. Adv., 2013, 31(8): 1200.
[34]  Kim Y M, Cho H S, Jung G Y, Park J M. Biotechnol. Bioeng., 2011, 108(12): 2941.
[35]  Gui L, Sunnarborg A, Pan B, LaPorte D C. J. Bacteriol., 1996, 178(1): 321.
[36]  Sanchez A M, Bennett G N, San K Y. Metab. Eng., 2005, 7(3): 229.
[37]  Zhu L W, Li X H, Zhang L, Li H M, Liu J H, Yuan Z P, Chen T, Tang Y J. Metab. Eng., 2013, 20C: 9.
[38]  Zhou S, Iverson A G, Grayburn W S. Biotechnol. Lett., 2008, 30(2): 335.
[39]  Zhou S, Iverson A G, Grayburn W S. Biotechnol. Prog., 2010, 26(1): 45.
[40]  Garza E, Zhao J, Wang Y, Wang J, Iverson A, Manow R, Finan C, Zhou S. J. Ind. Microbiol. Biotechnol., 2012, 39(8): 1101.
[41]  Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S. World Journal of Microbiology and Biotechnology, 2013, 29(7): 1225.
[42]  Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. J. Biol. Chem., 2004, 279(8): 6613.
[43]  Canonaco F, Hess T A, Heri S, Wang T, Szyperski T, Sauer U. FEMS Microbiol. Lett., 2001, 204(2): 247.
[44]  Cao Z, Song P, Xu Q, Su R, Zhu G. FEMS Microbiol. Lett., 2011, 320(1): 9.
[45]  Balzer G J, Thakker C, Bennett G N, San K Y. Metab. Eng., 2013, 20C: 1.
[46]  Martínez I, Zhu J, Lin H, Bennett G N, San K Y. Metab. Eng., 2008, 10(6): 352.
[47]  Wang Y, San K Y, Bennett G N. J. Ind. Microbiol. Biotechnol., 2013, 1.
[48]  Peng G J, Cho Y C, Fu T K, Yang M T, Hsu W H. Process Biochem., 2013, 48(10): 1509.
[49]  San K Y, Bennett G N, Berrios-Rivera S J, Vadali R V, Yang Y T, Horton E, Rudolph F B, Sariyar B, Blackwood K. Metab. Eng., 2002, 4(2): 182.
[50]  Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao Z K. J. Am. Chem. Soc., 2011, 133(51): 20857.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133